skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1840868

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The Sustainable Development Goals (SDGs) adopted by the United Nations in 2015 constitute a set of 17 global goals established as a blueprint for achieving a more sustainable and equitable world for humanity. As part of the SDGs, target 14.3 is focuses on minimizing and addressing the impacts of Ocean Acidification (OA). We argue that moving forward in meeting the targets related to pH levels in the coastal ocean can be facilitated through accounting for various drivers of pH change, which are associated with advancing a suite of SDG goals. Addressing ‘coastal acidification’ via a suite of linked SDGs may help avoid inaction through connecting global phenomena with local impacts and drivers. This in turn can provide opportunities for designing novel place-based actions or partnerships that can aid and provide synergies for the joint implementation of programs and policies that tackle a suite of SDGs and the specific targets related to coastal ocean pH. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Abstract The impacts of climate change on Arctic marine systems are noticeable within the scientific “lifetime” of most researchers and the iconic image of a polar bear struggling to stay on top of a melting ice floe captures many of the dominant themes of Arctic marine ecosystem change. But has our focus on open‐ocean systems and parameters that are more easily modeled and sensed remotely neglected an element that is responding more dramatically and with broader implications for Arctic ecosystems? We argue that a complementary set of changes to the open ocean is occurring along Arctic coasts, amplified by the interaction with changes on land and in the sea. We observe an increased number of ecosystem drivers with larger implications for the ecological and human communities they touch than are quantifiable in the open Arctic Ocean. Substantial knowledge gaps exist that must be filled to support adaptation and sustainability of socioecological systems along Arctic coasts. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  3. Abstract Great hope has been pinned on seaweed cultivation as being a potent way of removing CO2to reduce rates of sea surface warming and acidification. Marine heatwaves and nitrogen pollution in coastal ecosystems are serious current issues that need to be better understood to inform decision making and policy. Here, we investigated the effects of a simulated heatwave and nitrogen pollution on carbon sequestration by an important seaweed crop species and its phycosphere bacteria.Gracilaria lemaneiformiswas grown in ambient and high nitrogen conditions (14 and 200 μM L−1). Photosynthetic rate, seaweed biomass and particulate organic carbon accumulation were significantly increased in “high nitrogen‐no heatwave” conditions. In “ambient nitrogen heatwave” conditions, the expression of genes related to photosynthesis was down regulated and the seaweeds lost more dissolved organic carbon (DOC) to the surrounding water, resulting in more refractory dissolved organic carbon (RDOC). In “high nitrogen heatwave” conditions, photosynthetic gene expression was upregulated; bacterial abundance was also increased that can explain the reduced DOC and RDOC accumulation. The simulated heatwave reduced bacterial diversity while high nitrogen alleviated this effect. These findings suggest that the economically important algaG.lemaneiformismay lose more DOC and RDOC to nearshore waters during marine heatwave events, enhancing carbon sequestration, while nitrogen enrichment has a counteractive effect. 
    more » « less
  4. Abstract The chemistry of copper (Cu) in seawater is well known to be dominated by complexation with organic ligands. The prevailing paradigm is that Cu forms strong but labile complexes. Recently, a novel procedure revealed that only a small fraction of dissolved Cu exists as labile complexes. The majority is present as a fraction that is relatively inert on timescales of weeks or more and probably does not participate in coordination exchange reactions, including biologically mediated processes. Samples collected from the 2018 GEOTRACES GP15 cruise show that throughout the interior of the Pacific Ocean, this inert fraction comprises about 90% of the dissolved Cu. Labile Cu accumulates in surface waters, probably arising from photochemical decomposition of the inert fraction. There is also a modest accumulation of labile Cu near deep sea sediments and along the Alaskan shelf and slope. The results have important implications for Cu transport and biological availability. Inert Cu may influence Cu transport throughout the water column and contribute to the linear increase in Cu with depth, a distribution which is hard to explain for a biologically active trace metal. The origins of inert Cu are unknown. It may be produced slowly within the water column on the timescale of meridional overturning circulation. In the Columbia River, between 92% and 98% of the dissolved Cu is in the inert fraction, suggesting a possible terrestrial source of inert Cu to the ocean. 
    more » « less
  5. Abstract The dispersal of dissolved iron (DFe) from hydrothermal vents is poorly constrained. Combining field observations and a modeling hierarchy, we find the dispersal of DFe from the Trans‐Atlantic‐Geotraverse vent site occurs predominantly in the colloidal phase and is controlled by multiple physical processes. Enhanced mixing near the seafloor and transport through fracture zones at fine‐scales interacts with the wider ocean circulation to drive predominant westward DFe dispersal away from the Mid‐Atlantic ridge at the 100 km scale. In contrast, diapycnal mixing predominantly drives northward DFe transport within the ridge axial valley. The observed DFe dispersal is not reproduced by the coarse resolution ocean models typically used to assess ocean iron cycling due to their omission of local topography and mixing. Unless biogeochemical models account for fine‐scale physics and colloidal Fe, they will inaccurately represent DFe dispersal from axial valley ridge systems, which make up half of the global ocean ridge crest. 
    more » « less
  6. Abstract The dynamics of marine systems at decadal scales are notoriously hard to predict—hence references to this timescale as the “grey zone” for ocean prediction. Nevertheless, decadal-scale prediction is a rapidly developing field with an increasing number of applications to help guide ocean stewardship and sustainable use of marine environments. Such predictions can provide industry and managers with information more suited to support planning and management over strategic timeframes, as compared to seasonal forecasts or long-term (century-scale) predictions. The most significant advances in capability for decadal-scale prediction over recent years have been for ocean physics and biogeochemistry, with some notable advances in ecological prediction skill. In this paper, we argue that the process of “lighting the grey zone” by providing improved predictions at decadal scales should also focus on including human dimensions in prediction systems to better meet the needs and priorities of end users. Our paper reviews information needs for decision-making at decadal scales and assesses current capabilities for meeting these needs. We identify key gaps in current capabilities, including the particular challenge of integrating human elements into decadal prediction systems. We then suggest approaches for overcoming these challenges and gaps, highlighting the important role of co-production of tools and scenarios, to build trust and ensure uptake with end users of decadal prediction systems. We also highlight opportunities for combining narratives and quantitative predictions to better incorporate the human dimension in future efforts to light the grey zone of decadal-scale prediction. 
    more » « less
  7. Abstract The Observing Air–Sea Interactions Strategy (OASIS) is a new United Nations Decade of Ocean Science for Sustainable Development programme working to develop a practical, integrated approach for observing air–sea interactions globally for improved Earth system (including ecosystem) forecasts, CO2 uptake assessments called for by the Paris Agreement, and invaluable surface ocean information for decision makers. Our “Theory of Change” relies upon leveraged multi-disciplinary activities, partnerships, and capacity strengthening. Recommendations from >40 OceanObs’19 community papers and a series of workshops have been consolidated into three interlinked Grand Ideas for creating #1: a globally distributed network of mobile air–sea observing platforms built around an expanded array of long-term time-series stations; #2: a satellite network, with high spatial and temporal resolution, optimized for measuring air–sea fluxes; and #3: improved representation of air–sea coupling in a hierarchy of Earth system models. OASIS activities are organized across five Theme Teams: (1) Observing Network Design & Model Improvement; (2) Partnership & Capacity Strengthening; (3) UN Decade OASIS Actions; (4) Best Practices & Interoperability Experiments; and (5) Findable–Accessible–Interoperable–Reusable (FAIR) models, data, and OASIS products. Stakeholders, including researchers, are actively recruited to participate in Theme Teams to help promote a predicted, safe, clean, healthy, resilient, and productive ocean. 
    more » « less
  8. Abstract Marine zooplankton are key players in pelagic food webs, central links in ecosystem function, useful indicators of water masses, and rapid responders to environmental variation and climate change. Characterization of biodiversity of the marine zooplankton assemblage is complicated by many factors, including systematic complexity of the assemblage, with numerous rare and cryptic species, and high local-to-global ratios of species diversity. The papers in this themed article set document important advances in molecular protocols and procedures, integration with morphological taxonomic identifications, and quantitative analyses (abundance and biomass). The studies highlight several overarching conclusions and recommendations. A primary issue is the continuing need for morphological taxonomic experts, who can identify species and provide voucher specimens for reference sequence databases, which are essential for biodiversity analyses based on molecular approaches. The power of metabarcoding using multi-gene markers, including both DNA (Deoxyribonucleic Acid) and RNA (Ribonucleic Acid)templates, is demonstrated. An essential goal is the accurate identification of species across all taxonomic groups of marine zooplankton, with particular concern for detection of rare, cryptic, and invasive species. Applications of molecular approaches include analysis of trophic relationships by metabarcoding of gut contents, as well as investigation of the underlying ecological and evolutionary forces driving zooplankton diversity and structure. 
    more » « less
  9. Abstract Characterization of species diversity of zooplankton is key to understanding, assessing, and predicting the function and future of pelagic ecosystems throughout the global ocean. The marine zooplankton assemblage, including only metazoans, is highly diverse and taxonomically complex, with an estimated ~28,000 species of 41 major taxonomic groups. This review provides a comprehensive summary of DNA sequences for the barcode region of mitochondrial cytochrome oxidase I (COI) for identified specimens. The foundation of this summary is the MetaZooGene Barcode Atlas and Database (MZGdb), a new open-access data and metadata portal that is linked to NCBI GenBank and BOLD data repositories. The MZGdb provides enhanced quality control and tools for assembling COI reference sequence databases that are specific to selected taxonomic groups and/or ocean regions, with associated metadata (e.g., collection georeferencing, verification of species identification, molecular protocols), and tools for statistical analysis, mapping, and visualization. To date, over 150,000 COI sequences for ~ 5600 described species of marine metazoan plankton (including holo- and meroplankton) are available via the MZGdb portal. This review uses the MZGdb as a resource for summaries of COI barcode data and metadata for important taxonomic groups of marine zooplankton and selected regions, including the North Atlantic, Arctic, North Pacific, and Southern Oceans. The MZGdb is designed to provide a foundation for analysis of species diversity of marine zooplankton based on DNA barcoding and metabarcoding for assessment of marine ecosystems and rapid detection of the impacts of climate change. 
    more » « less
  10. Abstract We present a new approach for quantifying the bioavailability of dissolved iron (dFe) to oceanic phytoplankton. Bioavailability is defined using an uptake rate constant (kin‐app) computed by combining data on: (a) Fe content of individual in situ phytoplankton cells; (b) concurrently determined seawater dFe concentrations; and (c) growth rates estimated from the PISCES model. We examined 930 phytoplankton cells, collected between 2002 and 2016 from 45 surface stations during 11 research cruises. This approach is only valid for cells that have upregulated their high‐affinity Fe uptake system, so data were screened, yielding 560 single cellkin‐appvalues from 31 low‐Fe stations. We normalizedkin‐appto cell surface area (S.A.) to account for cell‐size differences. The resulting bioavailability proxy (kin‐app/S.A.) varies among cells, but all values are within bioavailability limits predicted from defined Fe complexes. In situ dFe bioavailability is higher than model Fe‐siderophore complexes and often approaches that of highly available inorganic Fe′. Station averagedkin‐app/S.A. are also variable but show no systematic changes across location, temperature, dFe, and phytoplankton taxa. Given the relative consistency ofkin‐app/S.A. among stations (ca. five‐fold variation), we computed a grand‐averaged dFe availability, which upon normalization to cell carbon (C) yieldskin‐app/C of 42,200 ± 11,000 L mol C−1 d−1. We utilizekin‐app/C to calculate dFe uptake rates and residence times in low Fe oceanic regions. Finally, we demonstrate the applicability ofkin‐app/C for constraining Fe uptake rates in earth system models, such as those predicting climate mediated changes in net primary production in the Fe‐limited Equatorial Pacific. 
    more » « less