skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Excitonically Coupled Cyclic BF 2 Arrays of Calix[8]‐ and Calix[16]phyrin as Near‐IR‐Chromophores
Two giant calix[n]phyrin derivatives namely calix- [8]- (4) and calix[16]phyrin (5), involving two and four BF2 units, respectively, were prepared through the condensation of the bis-naphthobipyrrolylmethene-BF2 complex (3) with pentafluorobenzaldehyde. Calix[n]phyrins 4 and 5 display extremely high extinction coefficients (3.67 and 4.82  105m1cm1, respectively) in the near-IR region, which was taken as initial evidence for strong excitonic coupling within these cyclic multi-chromophoric systems. Detailed insights into the effect of excitonic coupling dynamics on the electronic structure and photophysical properties of the macrocycles came from fluorescence, time-correlated single-photon counting (TCSPC) and transient absorption (TA) measurements. Support for these experimental findings came from theoretical studies. Theory and experiment confirmed that the coupling between the excitons depends on the specifics of the calix- [n]phyrin structure, not just its size.  more » « less
Award ID(s):
1807152
NSF-PAR ID:
10170731
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
59
ISSN:
1433-7851
Page Range / eLocation ID:
2–10
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Calix[4]arene‐based molecules hold great promise as candidate sensors and storage materials for nitric oxide (NO), owing to their unprecedented binding affinity for NO. However, the structure of calix[4]arene is complicated by the availability of four possible conformers: 1,3‐alternate, 1,2‐alternate, cone, and partial cone (paco). Whilst complexes of NO with several of these conformers have previously been established, the 1,2‐alternate conformer complex, that is, [1,2‐alterNO]+, has not been previously reported. Herein, we determine the crystal structure of the NO complex with the 1,2‐alternate conformer for the first time. In addition, we have also found that the 1,2‐alternate and 1,3‐alternate conformers can combine with two NO molecules to form stable bis(nitric oxide) complexes. These new complexes, which exhibit remarkable binding capacity for the construction of NO‐storage molecules, were characterized by using X‐ray crystallography and NMR, IR, and UV/Vis spectroscopy. These findings will extend our understanding of the interactions between nitric oxide and cofacially and non‐cofacially arrayed aromatic rings, and we expect them to aid in the design and development of new supramolecular sensors and storage materials for NO with high capacity and efficacy.

     
    more » « less
  2. null (Ed.)
    Two new alkali vanadate carbonates with divalent transition metals have been synthesized as large single crystals via a high-temperature (600 °C) hydrothermal technique. Compound I , Rb 2 Mn 3 (VO 4 ) 2 CO 3 , crystallizes in the trigonal crystal system in the space group P 3̄1 c , and compound II , K 2 Co 3 (VO 4 ) 2 CO 3 , crystallizes in the hexagonal space group P 6 3 / m . Both structures contain honeycomb layers and triangular lattices made from edge-sharing MO 6 octahedra and MO 5 trigonal bipyramids, respectively. The honeycomb and triangular layers are connected along the c -axis through tetrahedral [VO 4 ] groups. The MO 5 units are connected with each other by carbonate groups in the ab -plane by forming a triangular magnetic lattice. The difference in space groups between I and II was also investigated with Density Functional Theory (DFT) calculations. Single crystal magnetic characterization of I indicates three magnetic transitions at 77 K, 2.3 K, and 1.5 K. The corresponding magnetic structures for each magnetic transition of I were determined using single crystal neutron diffraction. At 77 K the compound orders in the MnO 6 -honeycomb layer in a Néel-type antiferromagnetic orientation while the MnO 5 triangular lattice ordered below 2.3 K in a colinear ‘up–up–down’ fashion, followed by a planar ‘Y’ type magnetic structure. K 2 Co 3 (VO 4 ) 2 CO 3 ( II ) exhibits a canted antiferromagnetic ordering below T N = 8 K. The Curie–Weiss fit (200–350 K) gives a Curie–Weiss temperature of −42 K suggesting a dominant antiferromagnetic coupling in the Co 2+ magnetic sublattices. 
    more » « less
  3. Abstract MnBi 2 Te 4 /(Bi 2 Te 3 ) n materials system has recently generated strong interest as a natural platform for the realization of the quantum anomalous Hall (QAH) state. The system is magnetically much better ordered than substitutionally doped materials, however, the detrimental effects of certain disorders are becoming increasingly acknowledged. Here, from compiling structural, compositional, and magnetic metrics of disorder in ferromagnetic (FM) MnBi 2 Te 4 /(Bi 2 Te 3 ) n it is found that migration of Mn between MnBi 2 Te 4 septuple layers (SLs) and otherwise non-magnetic Bi 2 Te 3 quintuple layers (QLs) has systemic consequences—it induces FM coupling of Mn-depleted SLs with Mn-doped QLs, seen in ferromagnetic resonance as an acoustic and optical resonance mode of the two coupled spin subsystems. Even for a large SL separation ( n ≳ 4 QLs) the structure cannot be considered as a stack of uncoupled two-dimensional layers. Angle-resolved photoemission spectroscopy and density functional theory studies show that Mn disorder within an SL causes delocalization of electron wave functions and a change of the surface band structure as compared to the ideal MnBi 2 Te 4 /(Bi 2 Te 3 ) n . These findings highlight the critical importance of inter- and intra-SL disorder towards achieving new QAH platforms as well as exploring novel axion physics in intrinsic topological magnets. 
    more » « less
  4. Abstract

    We report the isolation and characterization of a series of trinickel complexes with 2,3,6,7,10,11‐hexaoxytriphenylene (HOTP), [(Me3TPANi)3(HOTP)](BF4)n(Me3TPA=N,N,N‐tris[(6‐methyl‐2‐pyridyl)methyl]amine) (n=2, 3, 4 for complexes1,2,3). These complexes comprise a redox ladder whereby the HOTP core displays increasingly quinoidal character as its formal oxidation state changes from −4, to −3, and −2 in1,2, and3, respectively. No formal oxidation state changes occur on Ni, allowing the isolation of singlet diradical, monoradical, and closed‐shell configurations for HOTP in1,2, and3, respectively, with a concomitant decrease in the spin coupling strength upon oxidation. Because the three complexes can be considered models of the smallest building blocks of 2D conductive metal‐organic frameworks such as Ni9HOTP4, these results serve as possible inspiration for the construction of extended materials with targeted electric and magnetic properties.

     
    more » « less
  5. Abstract

    We report the isolation and characterization of a series of trinickel complexes with 2,3,6,7,10,11‐hexaoxytriphenylene (HOTP), [(Me3TPANi)3(HOTP)](BF4)n(Me3TPA=N,N,N‐tris[(6‐methyl‐2‐pyridyl)methyl]amine) (n=2, 3, 4 for complexes1,2,3). These complexes comprise a redox ladder whereby the HOTP core displays increasingly quinoidal character as its formal oxidation state changes from −4, to −3, and −2 in1,2, and3, respectively. No formal oxidation state changes occur on Ni, allowing the isolation of singlet diradical, monoradical, and closed‐shell configurations for HOTP in1,2, and3, respectively, with a concomitant decrease in the spin coupling strength upon oxidation. Because the three complexes can be considered models of the smallest building blocks of 2D conductive metal‐organic frameworks such as Ni9HOTP4, these results serve as possible inspiration for the construction of extended materials with targeted electric and magnetic properties.

     
    more » « less