Realization of ferromagnetic (FM) interlayer coupling in magnetic topological insulators (TIs) of the MnBi 2 Te 4 family of materials (MBTs) may pave the way for realizing the high-temperature quantum anomalous Hall effect (high- T QAHE). Here we propose a generic dual d-band (DDB) model to elucidate the energy difference (Δ E = E AFM − E FM ) between the AFM and FM coupling in transition-metal (TM)-doped MBTs, where the valence of TMs splits into d-t 2g and d-e g sub-bands. Remarkably, the DDB shows that Δ E is universally determined by the relative position of the dopant (X) and Mn d-e g / t 2g bands, . If Δ E d > 0, then Δ E > 0 and the desired FM coupling is favored. This surprisingly simple rule is confirmed by first-principles calculations of hole-type 3d and 4d TM dopants. Significantly, by applying the DDB model, we predict the high- T QAHE in the V-doped Mn 2 Bi 2 Te 5 , where the Curie temperature is enhanced by doubling of the MnTe layer, while the topological order mitigated by doping can be restored by strain.
more »
« less
Systemic consequences of disorder in magnetically self-organized topological MnBi 2 Te 4 /(Bi 2 Te 3 ) n superlattices
Abstract MnBi 2 Te 4 /(Bi 2 Te 3 ) n materials system has recently generated strong interest as a natural platform for the realization of the quantum anomalous Hall (QAH) state. The system is magnetically much better ordered than substitutionally doped materials, however, the detrimental effects of certain disorders are becoming increasingly acknowledged. Here, from compiling structural, compositional, and magnetic metrics of disorder in ferromagnetic (FM) MnBi 2 Te 4 /(Bi 2 Te 3 ) n it is found that migration of Mn between MnBi 2 Te 4 septuple layers (SLs) and otherwise non-magnetic Bi 2 Te 3 quintuple layers (QLs) has systemic consequences—it induces FM coupling of Mn-depleted SLs with Mn-doped QLs, seen in ferromagnetic resonance as an acoustic and optical resonance mode of the two coupled spin subsystems. Even for a large SL separation ( n ≳ 4 QLs) the structure cannot be considered as a stack of uncoupled two-dimensional layers. Angle-resolved photoemission spectroscopy and density functional theory studies show that Mn disorder within an SL causes delocalization of electron wave functions and a change of the surface band structure as compared to the ideal MnBi 2 Te 4 /(Bi 2 Te 3 ) n . These findings highlight the critical importance of inter- and intra-SL disorder towards achieving new QAH platforms as well as exploring novel axion physics in intrinsic topological magnets.
more »
« less
- Award ID(s):
- 2112550
- PAR ID:
- 10352923
- Date Published:
- Journal Name:
- 2D Materials
- Volume:
- 9
- Issue:
- 1
- ISSN:
- 2053-1583
- Page Range / eLocation ID:
- 015026
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Magnetic topological materials are promising for realizing novel quantum physical phenomena. Among these, bulk Mn-rich MnSb 2 Te 4 is ferromagnetic due to Mn Sb antisites and has relatively high Curie temperatures (T C ), which is attractive for technological applications. We have previously reported the growth of materials with the formula (Sb 2 Te 3 ) 1−x (MnSb 2 Te 4 ) x , where x varies between 0 and 1. Here we report on their magnetic and transport properties. We show that the samples are divided into three groups based on the value of x (or the percent septuple layers within the crystals) and their corresponding T C values. Samples that contain x < 0.7 or x > 0.9 have a single T C value of 15–20 K and 20–30 K, respectively, while samples with 0.7 < x < 0.8 exhibit two T C values, one (T C1 ) at ~ 25 K and the second (T C2 ) reaching values above 80 K, almost twice as high as any reported value to date for these types of materials. Structural analysis shows that samples with 0.7 < x < 0.8 have large regions of only SLs, while other regions have isolated QLs embedded within the SL lattice. We propose that the SL regions give rise to a T C1 of ~ 20 to 30 K, and regions with isolated QLs are responsible for the higher T C2 values. Our results have important implications for the design of magnetic topological materials having enhanced properties.more » « less
-
Abstract Results are reported for Mn intercalated Zr 2 Te 2 P, where x-ray diffraction , energy dispersive spectroscopy, and transmission electron microscopy measurements reveal that the van der Waals bonded Te–Te layers are partially filled by Zr and Mn ions. This leads to the chemical formulas Zr 0.07 Zr 2 Te 2 P and Mn 0.06 Zr 0.03 Zr 2 Te 2 P for the parent and substituted compounds, respectively. The impact of the Mn ions is seen in the anisotropic magnetic susceptibility, where Curie–Weiss fits to the data indicate that the Mn ions are in the divalent state. Heat capacity and electrical transport measurements reveal metallic behavior, but the electronic coefficient of the heat capacity ( γ Mn ≈ 36.6 mJ (mol·K 2 ) −1 ) is enhanced by comparison to that of the parent compound. Magnetic ordering is seen at T M ≈ 4 K, where heat capacity measurements additionally show that the phase transition is broad, likely due to the disordered Mn distribution. This transition also strongly reduces the electronic scattering seen in the normalized electrical resistance. These results show that Mn substitution simultaneously introduces magnetic interactions and tunes the electronic state, which improves prospects for inducing novel behavior in Zr 2 Te 2 P and the broader family of ternary tetradymites.more » « less
-
Abstract The interface between 2D topological Dirac states and ans‐wave superconductor is expected to support Majorana‐bound states (MBS) that can be used for quantum computing applications. Realizing these novel states of matter and their applications requires control over superconductivity and spin‐orbit coupling to achieve spin‐momentum‐locked topological interface states (TIS) which are simultaneously superconducting. While signatures of MBS have been observed in the magnetic vortex cores of bulk FeTe0.55Se0.45, inhomogeneity and disorder from doping make these signatures unclear and inconsistent between vortices. Here superconductivity is reported in monolayer (ML) FeTe1–ySey(Fe(Te,Se)) grown on Bi2Te3by molecular beam epitaxy (MBE). Spin and angle‐resolved photoemission spectroscopy (SARPES) directly resolve the interfacial spin and electronic structure of Fe(Te,Se)/Bi2Te3heterostructures. Fory = 0.25, the Fe(Te,Se) electronic structure is found to overlap with the Bi2Te3TIS and the desired spin‐momentum locking is not observed. In contrast, fory = 0.1, reduced inhomogeneity measured by scanning tunneling microscopy (STM) and a smaller Fe(Te,Se) Fermi surface with clear spin‐momentum locking in the topological states are found. Hence, it is demonstrated that the Fe(Te,Se)/Bi2Te3system is a highly tunable platform for realizing MBS where reduced doping can improve characteristics important for Majorana interrogation and potential applications.more » « less
-
Abstract The intrinsic magnetic topological insulator, Mn(Bi1−xSbx)2Te4, has been identified as a Weyl semimetal with a single pair of Weyl nodes in its spin-aligned strong-field configuration. A direct consequence of the Weyl state is the layer dependent Chern number,$$C$$ . Previous reports in MnBi2Te4thin films have shown higher$$C$$ states either by increasing the film thickness or controlling the chemical potential. A clear picture of the higher Chern states is still lacking as data interpretation is further complicated by the emergence of surface-band Landau levels under magnetic fields. Here, we report a tunable layer-dependent$$C$$ = 1 state with Sb substitution by performing a detailed analysis of the quantization states in Mn(Bi1−xSbx)2Te4dual-gated devices—consistent with calculations of the bulk Weyl point separation in the doped thin films. The observed Hall quantization plateaus for our thicker Mn(Bi1−xSbx)2Te4films under strong magnetic fields can be interpreted by a theory of surface and bulk spin-polarised Landau level spectra in thin film magnetic topological insulators.more » « less
An official website of the United States government

