skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Gradient Flow Algorithms for Density Propagation in Stochastic Systems
We develop a new computational framework to solve the partial differential equations (PDEs) governing the flow of the joint probability density functions (PDFs) in continuous-time stochastic nonlinear systems. The need for computing the transient joint PDFs subject to prior dynamics arises in uncertainty propagation, nonlinear filtering and stochastic control. Our methodology breaks away from the traditional approach of spatial discretization or function approximation – both of which, in general, suffer from the “curse-of-dimensionality”. In the proposed framework, we discretize time but not the state space. We solve infinite dimensional proximal recursions in the manifold of joint PDFs, which in the small time-step limit, is theoretically equivalent to solving the underlying transport PDEs. The resulting computation has the geometric interpretation of gradient flow of certain free energy functional with respect to the Wasserstein metric arising from the theory of optimal mass transport. We show that dualization along with an entropic regularization, leads to a cone-preserving fixed point recursion that is proved to be contractive in Thompson metric. A block co-ordinate iteration scheme is proposed to solve the resulting nonlinear recursions with guaranteed convergence. This approach enables remarkably fast computation for non-parametric transient joint PDF propagation. Numerical examples and various extensions are provided to illustrate the scope and efficacy of the proposed approach.  more » « less
Award ID(s):
1923278
PAR ID:
10170791
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE Transactions on Automatic Control
ISSN:
0018-9286
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We study the Schr{\"o}dinger bridge problem (SBP) with nonlinear prior dynamics. In control-theoretic language, this is a problem of minimum effort steering of a given joint state probability density function (PDF) to another over a finite time horizon, subject to a controlled stochastic differential evolution of the state vector. For generic nonlinear drift, we reduce the SBP to solving a system of forward and backward Kolmogorov partial differential equations (PDEs) that are coupled through the boundary conditions, with unknowns being the ``Schr\"{o}dinger factors". We show that if the drift is a gradient vector field, or is of mixed conservative-dissipative nature, then it is possible to transform these PDEs into a pair of initial value problems (IVPs) involving the same forward Kolmogorov operator. We employ a proximal algorithm developed in our prior work to solve these IVPs and compute the Schr\"{o}dinger factors via weighted scattered point cloud evolution in the state space. We provide the algorithmic details and illustrate the proposed framework of solving the SBPs with nonlinear prior dynamics by numerical examples. 
    more » « less
  2. This paper contributes to the emerging viewpoint that governing equations for dynamic state estimation, conditioned on the history of noisy measurements, can be viewed as gradient flow on the manifold of joint probability density functions with respect to suitable metrics. Herein, we focus on the Wonham filter where the prior dynamics is given by a continuous time Markov chain on a finite state space; the measurement model includes noisy observation of the (possibly nonlinear function of) state. We establish that the posterior flow given by the Wonham filter can be viewed as the small time-step limit of proximal recursions of certain functionals on the probability simplex. The results of this paper extend our earlier work where similar proximal recursions were derived for the Kalman-Bucy filter. 
    more » « less
  3. How to steer a given joint state probability density function to another over finite horizon subject to a controlled stochastic dynamics with hard state (sample path) constraints? In applications, state constraints may encode safety requirements such as obstacle avoidance. In this paper, we perform the feedback synthesis for minimum control effort density steering (a.k.a. Schrödinger bridge) problem subject to state constraints. We extend the theory of Schrödinger bridges to account the reflecting boundary conditions for the sample paths, and provide a computational framework building on our previous work on proximal recursions, to solve the same. 
    more » « less
  4. Finch, a domain specific language and code generation framework for partial differential equations (PDEs), is demonstrated here to solve two classical problems: steady-state advection diffusion equation (single PDE) and the phonon Boltzmann transport equation (coupled PDEs). Both finite volume and finite element methods are explored. In addition to work presented at the 2022 International Conference on Computational Science (Heisler et al., 2022), we include recent developments for solving nonlinear equations using both automatic and symbolic differentiation, and demonstrate the capability for the Bratu (nonlinear Poisson) equation. 
    more » « less
  5. We are concerned with free boundary problems arising from the analysis of multidimensional transonic shock waves for the Euler equations in compressible fluid dynamics. In this expository paper, we survey some recent developments in the analysis of multidimensional transonic shock waves and corresponding free boundary problems for the compressible Euler equations and related nonlinear partial differential equations (PDEs) of mixed type. The nonlinear PDEs under our analysis include the steady Euler equations for potential flow, the steady full Euler equations, the unsteady Euler equations for potential flow, and related nonlinear PDEs of mixed elliptic–hyperbolic type. The transonic shock problems include the problem of steady transonic flow past solid wedges, the von Neumann problem for shock reflection–diffraction, and the Prandtl–Meyer problem for unsteady supersonic flow onto solid wedges. We first show how these longstanding multidimensional transonic shock problems can be formulated as free boundary problems for the compressible Euler equations and related nonlinear PDEs of mixed type. Then we present an effective nonlinear method and related ideas and techniques to solve these free boundary problems. The method, ideas, and techniques should be useful to analyze other longstanding and newly emerging free boundary problems for nonlinear PDEs. 
    more » « less