How to steer a given joint state probability density function to another over finite horizon subject to a controlled stochastic dynamics with hard state (sample path) constraints? In applications, state constraints may encode safety requirements such as obstacle avoidance. In this paper, we perform the feedback synthesis for minimum control effort density steering (a.k.a. Schrödinger bridge) problem subject to state constraints. We extend the theory of Schrödinger bridges to account the reflecting boundary conditions for the sample paths, and provide a computational framework building on our previous work on proximal recursions, to solve the same.
more »
« less
Proximal Recursion for the Wonham Filter
This paper contributes to the emerging viewpoint that governing equations for dynamic state estimation, conditioned on the history of noisy measurements, can be viewed as gradient flow on the manifold of joint probability density functions with respect to suitable metrics. Herein, we focus on the Wonham filter where the prior dynamics is given by a continuous time Markov chain on a finite state space; the measurement model includes noisy observation of the (possibly nonlinear function of) state. We establish that the posterior flow given by the Wonham filter can be viewed as the small time-step limit of proximal recursions of certain functionals on the probability simplex. The results of this paper extend our earlier work where similar proximal recursions were derived for the Kalman-Bucy filter.
more »
« less
- PAR ID:
- 10173651
- Date Published:
- Journal Name:
- 2019 IEEE 58th Conference on Decision and Control (CDC)
- Page Range / eLocation ID:
- 660 to 665
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We develop a new computational framework to solve the partial differential equations (PDEs) governing the flow of the joint probability density functions (PDFs) in continuous-time stochastic nonlinear systems. The need for computing the transient joint PDFs subject to prior dynamics arises in uncertainty propagation, nonlinear filtering and stochastic control. Our methodology breaks away from the traditional approach of spatial discretization or function approximation – both of which, in general, suffer from the “curse-of-dimensionality”. In the proposed framework, we discretize time but not the state space. We solve infinite dimensional proximal recursions in the manifold of joint PDFs, which in the small time-step limit, is theoretically equivalent to solving the underlying transport PDEs. The resulting computation has the geometric interpretation of gradient flow of certain free energy functional with respect to the Wasserstein metric arising from the theory of optimal mass transport. We show that dualization along with an entropic regularization, leads to a cone-preserving fixed point recursion that is proved to be contractive in Thompson metric. A block co-ordinate iteration scheme is proposed to solve the resulting nonlinear recursions with guaranteed convergence. This approach enables remarkably fast computation for non-parametric transient joint PDF propagation. Numerical examples and various extensions are provided to illustrate the scope and efficacy of the proposed approach.more » « less
-
Real-time controllers must satisfy strict safety requirements. Recently, Control Barrier Functions (CBFs) have been proposed that guarantee safety by ensuring that a suitablydefined barrier function remains bounded for all time. The CBF method, however, has only been developed for deterministic systems and systems with worst-case disturbances and uncertainties. In this paper, we develop a CBF framework for safety of stochastic systems. We consider complete information systems, in which the controller has access to the exact system state, as well as incomplete information systems where the state must be reconstructed from noisy measurements. In the complete information case, we formulate a notion of barrier functions that leads to sufficient conditions for safety with probability 1. In the incomplete information case, we formulate barrier functions that take an estimate from an extended Kalman filter as input, and derive bounds on the probability of safety as a function of the asymptotic error in the filter. We show that, in both cases, the sufficient conditions for safety can be mapped to linear constraints on the control input at each time, enabling the development of tractable optimization-based controllers that guarantee safety, performance, and stability. Our approach is evaluated via simulation study on an adaptive cruise control case study.more » « less
-
Motivated by the computation of the non-parametric maximum likelihood estimator (NPMLE) and the Bayesian posterior in statistics, this paper explores the problem of convex optimization over the space of all probability distributions. We introduce an implicit scheme, called the implicit KL proximal descent (IKLPD) algorithm, for discretizing a continuous-time gradient flow relative to the KullbackLeibler divergence for minimizing a convex target functional. We show that IKLPD converges to a global optimum at a polynomial rate from any initialization; moreover, if the objective functional is strongly convex relative to the KL divergence, for example, when the target functional itself is a KL divergence as in the context of Bayesian posterior computation, IKLPD exhibits globally exponential convergence. Computationally, we propose a numerical method based on normalizing flow to realize IKLPD. Conversely, our numerical method can also be viewed as a new approach that sequentially trains a normalizing flow for minimizing a convex functional with a strong theoretical guarantee.more » « less
-
null (Ed.)Abstract Learning the topology of a graph from available data is of great interest in many emerging applications. Some examples are social networks, internet of things networks (intelligent IoT and industrial IoT), biological connection networks, sensor networks and traffic network patterns. In this paper, a graph topology inference approach is proposed to learn the underlying graph structure from a given set of noisy multi-variate observations, which are modeled as graph signals generated from a Gaussian Markov Random Field (GMRF) process. A factor analysis model is applied to represent the graph signals in a latent space where the basis is related to the underlying graph structure. An optimal graph filter is also developed to recover the graph signals from noisy observations. In the final step, an optimization problem is proposed to learn the underlying graph topology from the recovered signals. Moreover, a fast algorithm employing the proximal point method has been proposed to solve the problem efficiently. Experimental results employing both synthetic and real data show the effectiveness of the proposed method in recovering the signals and inferring the underlying graph.more » « less
An official website of the United States government

