skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Nonequilibrium Thermodynamics in Cell Biology: Extending Equilibrium Formalism to Cover Living Systems
We discuss new developments in the nonequilibrium dynamics and thermodynamics of living systems, giving a few examples to demonstrate the importance of nonequilibrium thermodynamics for understanding biological dynamics and functions. We study single-molecule enzyme dynamics, in which the nonequilibrium thermodynamic and dynamic driving forces of chemical potential and flux are crucial for the emergence of non-Michaelis-Menten kinetics. We explore single-gene expression dynamics, in which nonequilibrium dissipation can suppress fluctuations. We investigate the cell cycle and identify the nutrition supply as the energy input that sustains the stability, speed, and coherence of cell cycle oscillation, from which the different vital phases of the cell cycle emerge. We examine neural decision-making processes and find the trade-offs among speed, accuracy, and thermodynamic costs that are important for neural function. Lastly, we consider the thermodynamic cost for specificity in cellular signaling and adaptation.  more » « less
Award ID(s):
1808474 1606549
PAR ID:
10170794
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Annual Review of Biophysics
Volume:
49
Issue:
1
ISSN:
1936-122X
Page Range / eLocation ID:
227 to 246
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Nonequilibrium interfacial thermodynamics has important implications for crucial biological, physical, and industrial-scale transport processes. Here, we discuss a theory of local equilibrium for multiphase multicomponent interfaces that builds upon the “sharp” interface concept first introduced by Gibbs, allowing for a description of nonequilibrium interfacial processes such as those arising in evaporation, condensation, adsorption, etc. By requiring that the thermodynamics be insensitive to the precise location of the dividing surface, one can identify conditions for local equilibrium and develop methods for measuring the values of intensive variables at the interface. We then use extensive, high-precision nonequilibrium molecular dynamics (NEMD) simulations to verify the theory and establish the validity of the local equilibrium hypothesis. In particular, we demonstrate that equilibrium equations of state are also valid out of equilibrium, and can be used to determine interfacial temperature and chemical potential(s) that are consistent with nonequilibrium generalizations of the Clapeyron and Gibbs adsorption equations. We also show, for example, that, far from equilibrium, temperature or chemical potential differences need not be uniform across an interface and may instead exhibit pronounced discontinuities. However, even in these circumstances, we demonstrate that the local equilibrium hypothesis and its implications remain valid. These results provide a thermodynamic foundation and computational tools for studying or revisiting a wide variety of interfacial transport phenomena. 
    more » « less
  2. We combine stochastic thermodynamics, large deviation theory, and information theory to derive fundamental limits on the accuracy with which single cell receptors can estimate external concentrations. As expected, if the estimation is performed by an ideal observer of the entire trajectory of receptor states, then no energy consuming nonequilibrium receptor that can be divided into bound and unbound states can outperform an equilibrium two- state receptor. However, when the estimation is performed by a simple observer that measures the fraction of time the receptor is bound, we derive a fundamental limit on the accuracy of general nonequilibrium receptors as a function of energy consumption. We further derive and exploit explicit formulas to numerically estimate a Pareto-optimal tradeoff between accuracy and energy. We find this tradeoff can be achieved by nonuniform ring receptors with a number of states that necessarily increases with energy. Our results yield a thermodynamic uncertainty relation for the time a physical system spends in a pool of states and generalize the classic Berg- Purcell limit [H. C. Berg and E. M. Purcell, Biophys. J. 20, 193 (1977)] on cellular sensing along multiple dimensions. 
    more » « less
  3. Nonequilibrium work relations have fundamentally advanced our understanding of molecular processes. In recent years, fluctuation theorems have been extensively applied to understand transitions between equilibrium steady-states, commonly described by simple control parameters such as molecular extension of a protein or polymer chain stretched by an external force in a quiescent fluid. Despite recent progress, far less is understood regarding the application of fluctuation theorems to processes involving nonequilibrium steady-states such as those described by polymer stretching dynamics in nonequilibrium fluid flows. In this work, we apply the Crooks fluctuation theorem to understand the nonequilibrium thermodynamics of dilute polymer solutions in flow. We directly determine the nonequilibrium free energy for single polymer molecules in flow using a combination of single molecule experiments and Brownian dynamics simulations. We further develop a time-dependent extensional flow protocol that allows for probing viscoelastic hysteresis over a wide range of flow strengths. Using this framework, we define quantities that uniquely characterize the coil-stretch transition for polymer chains in flow. Overall, generalized fluctuation theorems provide a powerful framework to understand polymer dynamics under far-from-equilibrium conditions. 
    more » « less
  4. Developing a thermodynamic theory of computation is a challenging task at the interface of nonequilibrium thermodynamics and computer science. In particular, this task requires dealing with difficulties such as stochastic halting times, unidirectional (possibly deterministic) transitions, and restricted initial conditions, features common in real-world computers. Here, we present a framework which tackles all such difficulties by extending the martingale theory of nonequilibrium thermodynamics to generic nonstationary Markovian processes, including those with broken detailed balance and/or absolute irreversibility. We derive several universal fluctuation relations and second-law-like inequalities that provide both lower and upper bounds on the intrinsic dissipation (mismatch cost) associated with any periodic process—in particular, the periodic processes underlying all current digital computation. Crucially, these bounds apply even if the process has stochastic stopping times, as it does in many computational machines. We illustrate our results with exhaustive numerical simulations of deterministic finite automata processing bit strings, one of the fundamental models of computation from theoretical computer science. We also provide universal equalities and inequalities for the acceptance probability of words of a given length by a deterministic finite automaton in terms of thermodynamic quantities, and outline connections between computer science and stochastic resetting. Our results, while motivated from the computational context, are applicable far more broadly. 
    more » « less
  5. Living systems are intrinsically nonequilibrium: They use metabolically derived chemical energy to power their emergent dynamics and self-organization. A crucial driver of these dynamics is the cellular cytoskeleton, a defining example of an active material where the energy injected by molecular motors cascades across length scales, allowing the material to break the constraints of thermodynamic equilibrium and display emergent nonequilibrium dynamics only possible due to the constant influx of energy. Notwithstanding recent experimental advances in the use of local probes to quantify entropy production and the breaking of detailed balance, little is known about the energetics of active materials or how energy propagates from the molecular to emergent length scales. Here, we use a recently developed picowatt calorimeter to experimentally measure the energetics of an active microtubule gel that displays emergent large-scale flows. We find that only approximately one-billionth of the system’s total energy consumption contributes to these emergent flows. We develop a chemical kinetics model that quantitatively captures how the system’s total thermal dissipation varies with ATP and microtubule concentrations but that breaks down at high motor concentration, signaling an interference between motors. Finally, we estimate how energy losses accumulate across scales. Taken together, these results highlight energetic efficiency as a key consideration for the engineering of active materials and are a powerful step toward developing a nonequilibrium thermodynamics of living systems. 
    more » « less