skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1808474

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Correction for ‘The role of energy cost on accuracy, sensitivity, specificity, speed and adaptation of T cell foreign and self recognition’ by Gyubaek Shin et al. , Phys. Chem. Chem. Phys. , 2021, 23 , 2860–2872, DOI: 10.1039/D0CP02422H. 
    more » « less
  2. null (Ed.)
    The critical role of energy consumption in biological systems including T cell discrimination process has been investigated in various ways. The kinetic proofreading (KPR) in T cell recognition involving different levels of energy dissipation influences functional outcomes such as error rates and specificity. In this work, we study quantitatively how the energy cost influences error fractions, sensitivity, specificity, kinetic speed in terms of Mean First Passage Time (MFPT) and adaption errors. These provide the background to adequately understand T cell dynamics. It is found that energy plays a central role in the system that aims to achieve minimum error fractions and maximum sensitivity and specificity with the fastest speed under our kinetic scheme for which numerical values of kinetic parameters are specially chosen, but such a condition can be broken with varying data. Starting with the application of steady state approximation (SSA) to the evaluation of the concentration of each complex produced associated with KPR, which is used to quantify various observables, we present both analytical and numerical results in detail. 
    more » « less
  3. null (Ed.)
    Cells adapt to changing environments. Perturb a cell and it returns to a point of homeostasis. Perturb a population and it evolves toward a fitness peak. We review quantitative models of the forces of adaptation and their visualizations on landscapes. While some adaptations result from single mutations or few-gene effects, others are more cooperative, more delocalized in the genome, and more universal and physical. For example, homeostasis and evolution depend on protein folding and aggregation, energy and protein production, protein diffusion, molecular motor speeds and efficiencies, and protein expression levels. Models provide a way to learn about the fitness of cells and cell populations by making and testing hypotheses. 
    more » « less
  4. We discuss new developments in the nonequilibrium dynamics and thermodynamics of living systems, giving a few examples to demonstrate the importance of nonequilibrium thermodynamics for understanding biological dynamics and functions. We study single-molecule enzyme dynamics, in which the nonequilibrium thermodynamic and dynamic driving forces of chemical potential and flux are crucial for the emergence of non-Michaelis-Menten kinetics. We explore single-gene expression dynamics, in which nonequilibrium dissipation can suppress fluctuations. We investigate the cell cycle and identify the nutrition supply as the energy input that sustains the stability, speed, and coherence of cell cycle oscillation, from which the different vital phases of the cell cycle emerge. We examine neural decision-making processes and find the trade-offs among speed, accuracy, and thermodynamic costs that are important for neural function. Lastly, we consider the thermodynamic cost for specificity in cellular signaling and adaptation. 
    more » « less