skip to main content


Title: Efficient Algorithms towards Network Intervention
Research suggests that social relationships have substantial impacts on individuals’ health outcomes. Network intervention, through careful planning, can assist a network of users to build healthy relationships. However, most previous work is not designed to assist such planning by carefully examining and improving multiple network characteristics. In this paper, we propose and evaluate algorithms that facilitate network intervention planning through simultaneous optimization of network degree, closeness, betweenness, and local clustering coefficient, under scenarios involving Network Intervention with Limited Degradation - for Single target (NILD-S) and Network Intervention with Limited Degradation - for Multiple targets (NILD-M). We prove that NILD-S and NILD-M are NP-hard and cannot be approximated within any ratio in polynomial time unless P=NP. We propose the Candidate Re-selection with Preserved Dependency (CRPD) algorithm for NILD-S, and the Objective-aware Intervention edge Selection and Adjustment (OISA) algorithm for NILD-M. Various pruning strategies are designed to boost the efficiency of the proposed algorithms. Extensive experiments on various real social networks collected from public schools and Web and an empirical study are conducted to show that CRPD and OISA outperform the baselines in both efficiency and effectiveness.  more » « less
Award ID(s):
1717084 1806874
NSF-PAR ID:
10170813
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of The Web Conference 2020
Page Range / eLocation ID:
2021 to 2031
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The Eisenberg and Noe (EN) model has been widely adopted in the systemic risk management for financial networks. In this paper, we propose a unified EN (U‐EN) model, which incorporates both liquidation and bankruptcy costs. We show that the U‐EN model is polynomial‐time solvable and develop an efficient greedy algorithm to solve it. Then we consider identifying the optimal bailout strategy based on stress testing background and propose a binary EN model with bailout budget constraint (B‐EN‐B). The B‐EN‐B model is shown to be NP‐hard. We present analysis on the parameter selection and design some preprocessing procedures correspondingly. A sequential coefficient strengthening algorithm is designed to solve the B‐EN‐B model. Global convergence of the algorithm is established. Moreover, we show that the systemic risk level obtained from the B‐EN‐B model can be used as a precaution for the social planner. Experiments based on both simulated data and data from the Chinese listed banks' network are reported to demonstrate the efficiency of the proposed algorithms.

     
    more » « less
  2. Content spread inequity is a potential unfairness issue in online social networks, disparately impacting minority groups. In this paper, we view friendship suggestion, a common feature in social network platforms, as an opportunity to achieve an equitable spread of content. In particular, we propose to suggest a subset of potential edges (currently not existing in the network but likely to be accepted) that maximizes content spread while achieving fairness. Instead of re-engineering the existing systems, our proposal builds a fairness wrapper on top of the existing friendship suggestion components. We prove the problem is NP-hard and inapproximable in polynomial time unless P=NP. Therefore, allowing relaxation of the fairness constraint, we propose an algorithm based on LP-relaxation and randomized rounding with fixed approximation ratios on fairness and content spread. We provide multiple optimizations, further improving the performance of our algorithm in practice. Besides, we propose a scalable algorithm that dynamically adds subsets of nodes, chosen via iterative sampling, and solves smaller problems corresponding to these nodes. Besides theoretical analysis, we conduct comprehensive experiments on real and synthetic data sets. Across different settings, our algorithms found solutions with near-zero unfairness while significantly increasing the content spread. Our scalable algorithm could process a graph with half a million nodes on a single machine, reducing the unfairness to around 0.0004 while lifting content spread by 43%. 
    more » « less
  3. Network connectivity optimization, which aims to manipulate network connectivity by changing its underlying topology, is a fundamental task behind a wealth of high-impact data mining applications, ranging from immunization, critical infrastructure construction, social collaboration mining, bioinformatics analysis, to intelligent transportation system design. To tackle its exponential computation complexity, greedy algorithms have been extensively used for network connectivity optimization by exploiting its diminishing returns property. Despite the empirical success, two key challenges largely remain open. First, on the theoretic side, the hardness, as well as the approximability of the general network connectivity optimization problem are still nascent except for a few special instances. Second, on the algorithmic side, current algorithms are often hard to balance between the optimization quality and the computational efficiency. In this paper, we systematically address these two challenges for the network connectivity optimization problem. First, we reveal some fundamental limits by proving that, for a wide range of network connectivity optimization problems, (1) they are NP-hard and (2) (1-1/e) is the optimal approximation ratio for any polynomial algorithms. Second, we propose an effective, scalable and general algorithm (CONTAIN) to carefully balance the optimization quality and the computational efficiency. 
    more » « less
  4. Attributed network embedding aims to learn lowdimensional vector representations for nodes in a network, where each node contains rich attributes/features describing node content. Because network topology structure and node attributes often exhibit high correlation, incorporating node attribute proximity into network embedding is beneficial for learning good vector representations. In reality, large-scale networks often have incomplete/missing node content or linkages, yet existing attributed network embedding algorithms all operate under the assumption that networks are complete. Thus, their performance is vulnerable to missing data and suffers from poor scalability. In this paper, we propose a Scalable Incomplete Network Embedding (SINE) algorithm for learning node representations from incomplete graphs. SINE formulates a probabilistic learning framework that separately models pairs of node-context and node-attribute relationships. Different from existing attributed network embedding algorithms, SINE provides greater flexibility to make the best of useful information and mitigate negative effects of missing information on representation learning. A stochastic gradient descent based online algorithm is derived to learn node representations, allowing SINE to scale up to large-scale networks with high learning efficiency. We evaluate the effectiveness and efficiency of SINE through extensive experiments on real-world networks. Experimental results confirm that SINE outperforms state-of-the-art baselines in various tasks, including node classification, node clustering, and link prediction, under settings with missing links and node attributes. SINE is also shown to be scalable and efficient on large-scale networks with millions of nodes/edges and high-dimensional node features. 
    more » « less
  5. The large number of antennas in massive MIMO systems allows the base station to communicate with multiple users at the same time and frequency resource with multi-user beamforming. However, highly correlated user channels could drastically impede the spectral efficiency that multi-user beamforming can achieve. As such, it is critical for the base station to schedule a suitable group of users in each time and frequency resource block to achieve maximum spectral efficiency while adhering to fairness constraints among the users. In this paper, we consider the resource scheduling problem for massive MIMO systems with its optimal solution known to be NP-hard. Inspired by recent achievements in deep reinforcement learning (DRL) to solve problems with large action sets, we propose SMART, a dynamic scheduler for massive MIMO based on the state-of-the-art Soft Actor-Critic (SAC) DRL model and the K-Nearest Neighbors (KNN) algorithm. Through comprehensive simulations using realistic massive MIMO channel models as well as real-world datasets from channel measurement experiments, we demonstrate the effectiveness of our proposed model in various channel conditions. Our results show that our proposed model performs very close to the optimal proportionally fair (Opt-PF) scheduler in terms of spectral efficiency and fairness with more than one order of magnitude lower computational complexity in medium network sizes where Opt-PF is computationally feasible. Our results also show the feasibility and high performance of our proposed scheduler in networks with a large number of users and resource blocks. 
    more » « less