skip to main content


Title: Controlling Fairness and Bias in Dynamic Learning-to-Rank
Rankings are the primary interface through which many online platforms match users to items (e.g. news, products, music, video). In these two-sided markets, not only the users draw utility from the rankings, but the rankings also determine the utility (e.g. exposure, revenue) for the item providers (e.g. publishers, sellers, artists, studios). It has already been noted that myopically optimizing utility to the users – as done by virtually all learning-to-rank algorithms – can be unfair to the item providers. We, therefore, present a learning-to-rank approach for explicitly enforcing merit-based fairness guarantees to groups of items (e.g. articles by the same publisher, tracks by the same artist). In particular, we propose a learning algorithm that ensures notions of amortized group fairness, while simultaneously learning the ranking function from implicit feedback data. The algorithm takes the form of a controller that integrates unbiased estimators for both fairness and utility, dynamically adapting both as more data becomes available. In addition to its rigorous theoretical foundation and convergence guarantees, we find empirically that the algorithm is highly practical and robust.  more » « less
Award ID(s):
1901168
NSF-PAR ID:
10170896
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’20)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Rankings are the primary interface through which many online platforms match users to items (e.g. news, products, music, video). In these two-sided markets, not only do the users draw utility from the rankings, but the rankings also determine the utility (e.g. exposure, revenue) for the item providers (e.g. publishers, sellers, artists, studios). It has already been noted that myopically optimizing utility to the users -- as done by virtually all learning-to-rank algorithms -- can be unfair to the item providers. We, therefore, present a learning-to-rank approach for explicitly enforcing merit-based fairness guarantees to groups of items (e.g. articles by the same publisher, tracks by the same artist). In particular, we propose a learning algorithm that ensures notions of amortized group fairness, while simultaneously learning the ranking function from implicit feedback data. The algorithm takes the form of a controller that integrates unbiased estimators for both fairness and utility, dynamically adapting both as more data becomes available. In addition to its rigorous theoretical foundation and convergence guarantees, we find empirically that the algorithm is highly practical and robust. 
    more » « less
  2. Conventional Learning-to-Rank (LTR) methods optimize the utility of the rankings to the users, but they are oblivious to their impact on the ranked items. However, there has been a growing understanding that the latter is important to consider for a wide range of ranking applications (e.g. online marketplaces, job placement, admissions). To address this need, we propose a general LTR framework that can optimize a wide range of utility metrics (e.g. NDCG) while satisfying fairness of exposure constraints with respect to the items. This framework expands the class of learnable ranking functions to stochastic ranking policies, which provides a language for rigorously expressing fairness specifications. Furthermore, we provide a new LTR algorithm called FAIR-PG-RANK for directly searching the space of fair ranking policies via a policy-gradient approach. Beyond the theoretical evidence in deriving the framework and the algorithm, we provide empirical results on simulated and real-world datasets verifying the effectiveness of the approach in individual and group-fairness settings. 
    more » « less
  3. A large number of two-sided markets are now mediated by search and recommender systems, ranging from online retail and streaming entertainment to employment and romantic-partner matching. I will discuss in this talk how the design decisions that go into these search and recommender systems carry substantial power in shaping markets and allocating opportunity to the participants. This does not only raise legal and fairness questions, but also questions about how these systems shape incentives and the long-term effectiveness of the market. At the core of these questions lies the problem of where to rank each item, and how this affects both sides of the market. While it is well understood how to maximize the utility to the users, this talk focuses on how rankings affect the items that are being ranked. From the items perspective, the ranking system is an arbiter of exposure and thus economic opportunity. I will discuss how machine learning algorithms that follow the conventional Probability Ranking Principle [1] can lead to undesirable and unfair exposure allocation for both exogenous and endogenous reasons. Exogenous reasons often manifest themselves as biases in the training data, which then get reflected in the learned ranking policy. But even when trained with unbiased data, reasons endogenous to the system can lead to unfair or undesirable allocation of opportunity. To overcome these challenges, I will present new machine learning algorithms [2,3,4] that directly address both endogenous and exogenous factors, allowing the designer to tailor the ranking policy to be appropriate for the specific two-sided market. 
    more » « less
  4. The learning-to-rank problem aims at ranking items to maximize exposure of those most relevant to a user query. A desirable property of such ranking systems is to guarantee some notion of fairness among specified item groups. While fairness has recently been considered in the context of learning-to-rank systems, current methods cannot provide guarantees on the fairness of the predicted rankings. This paper addresses this gap and introduces Smart Predict and Optimize for Fair Ranking (SPOFR), an integrated optimization and learning framework for fairness-constrained learning to rank. The end-to-end SPOFR framework includes a constrained optimization sub-model and produces ranking policies that are guaranteed to satisfy fairness constraints, while allowing for fine control of the fairness-utility tradeoff. SPOFR is shown to significantly improve on current state-of-the-art fair learning-to-rank systems with respect to established performance metrics. 
    more » « less
  5. This paper studies a stylized, yet natural, learning-to-rank problem and points out the critical incorrectness of a widely used nearest neighbor algorithm. We consider a model with n agents (users) {xi}i∈[n] and m alternatives (items) {yl}l∈[m], each of which is associated with a latent feature vector. Agents rank items nondeterministically according to the Plackett-Luce model, where the higher the utility of an item to the agent, the more likely this item will be ranked high by the agent. Our goal is to identify near neighbors of an arbitrary agent in the latent space for prediction. We first show that the Kendall-tau distance based kNN produces incorrect results in our model. Next, we propose a new anchor-based algorithm to find neighbors of an agent. A salient feature of our algorithm is that it leverages the rankings of many other agents (the so-called “anchors”) to determine the closeness/similarities of two agents. We provide a rigorous analysis for one-dimensional latent space, and complement the theoretical results with experiments on synthetic and real datasets. The experiments confirm that the new algorithm is robust and practical. 
    more » « less