Dual-stimuli in-situ TEM study on the nonergodic/ergodic crossover in the 0.75(Bi 1/2 Na 1/2 )TiO 3 –0.25SrTiO 3 relaxor
- Award ID(s):
- 1465254
- Publication Date:
- NSF-PAR ID:
- 10170955
- Journal Name:
- Applied Physics Letters
- Volume:
- 114
- Issue:
- 21
- Page Range or eLocation-ID:
- 212901
- ISSN:
- 0003-6951
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
(Bi 1/2 Na 1/2 )TiO 3 (BNT) based ceramics have been the hot topic for a few years because of their multiple functions, from the piezoelectric properties to more recently the electrostatic energy storage performance. However, some basic issues are still unclear, preventing their wide application in real devices. One of them is the underlying conduction mechanism, the interplay of electronic and ionic carriers as a mixed ionic case and the subsequent quantification. This paper deals with the most basic compositions, which are the typical ones from the (1 − x )(Bi 1/2 Na 1/2 )TiO 3 – x BaTiO 3 (BNT– x BT) phase diagram. The conductivity is primarily investigated by impedance spectroscopy, while different equivalent circuits are applied to different conduction mechanisms. A transition from predominantly ionic to predominantly electronic conduction is revealed to occur with the increase in BaTiO 3 concentration. The mixed ionic–electronic conduction in the composition near the morphotropic phase boundary, namely BNT–7%BT, is identified and then quantified. To verify our interpretation of impedance results, dc degradation is, for the first time, conducted in this family of materials, from which the electronic and ionic conductions can be easily separated by accessing the mean time tomore »