Abstract Animals use a diverse array of motion to feed, escape predators, and reproduce. Linking morphology, performance, and fitness is a foundational paradigm in organismal biology and evolution. Yet, the influence of mechanical relationships on evolutionary diversity remains unresolved. Here, I focus on the many-to-one mapping of form to function, a widespread, emergent property of many mechanical systems in nature, and discuss how mechanical redundancy influences the tempo and mode of phenotypic evolution. By supplying many possible morphological pathways for functional adaptation, many-to-one mapping can release morphology from selection on performance. Consequently, many-to-one mapping decouples morphological and functional diversification. In fish, for example, parallel morphological evolution is weaker for traits that contribute to mechanically redundant motions, like suction feeding performance, than for systems with one-to-one form–function relationships, like lower jaw lever ratios. As mechanical complexity increases, historical factors play a stronger role in shaping evolutionary trajectories. Many-to-one mapping, however, does not always result in equal freedom of morphological evolution. The kinematics of complex systems can often be reduced to variation in a few traits of high mechanical effect. In various different four-bar linkage systems, for example, mechanical output (kinematic transmission) is highly sensitive to size variation in one or two links, and insensitive to variation in the others. In four-bar linkage systems, faster rates of evolution are biased to traits of high mechanical effect. Mechanical sensitivity also results in stronger parallel evolution—evolutionary transitions in mechanical output are coupled with transition in linkages of high mechanical effect. In other words, the evolutionary dynamics of complex systems can actually approximate that of simpler, one-to-one systems when mechanical sensitivity is strong. When examined in a macroevolutionary framework, the same mechanical system may experience distinct selective pressures in different groups of organisms. For example, performance tradeoffs are stronger for organisms that use the same mechanical structure for more functions. In general, stronger performance tradeoffs result in less phenotypic diversity in the system and, sometimes, a slower rate of evolution. These macroevolutionary trends can contribute to unevenness in functional and lineage diversity across the tree of life. Finally, I discuss how the evolution of mechanical systems informs our understanding of the relative roles of determinism and contingency in evolution. 
                        more » 
                        « less   
                    
                            
                            Extending the Geometric Approach for Studying Biomechanical Motions
                        
                    
    
            Abstract Whether it is swimming, walking, eating, or jumping, motions are a fundamental way in which organisms interact with their environment. Understanding how morphology contributes to motion is a primary focus of kinematic research and is necessary for gaining insights into the evolution of functional systems. However, an element that is largely missing from traditional analyses of motion is the spatial context in which they occur. We explore an application of geometric morphometrics (GM) for analyzing and comparing motions to evaluate the outputs of biomechanical linkage models. We focus on a common model for oral jaw mechanics of perciform fishes, the fourbar linkage, using GM to summarize motion as a trajectory of shape change. Two traits derived from trajectories capture the total kinesis generated by a linkage (trajectory length) and the kinematic asynchrony (KA) of its mobile components (trajectory nonlinearity). Oral jaw fourbar data from two subfamilies of Malagasy cichlids were used to generate form–function landscapes, describing broad features of kinematic diversity. Our results suggest that kinesis and KA have complex relationships with fourbar morphology, each displaying a pattern in which different shapes possess equivalent kinematic trait values, known as many-to-one mapping of form-to-function. Additionally, we highlight the observation that KA captures temporal differences in the activation of motion components, a feature of kinesis that has long been appreciated but was difficult to measure. The methods used here to study fourbar linkages can also be applied to more complex biomechanical models and broadly to motions of live organisms. We suggest that they provide a suitable alternative to traditional approaches for evaluating linkage function and kinematics. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1839250
- PAR ID:
- 10170994
- Date Published:
- Journal Name:
- Integrative and Comparative Biology
- Volume:
- 59
- Issue:
- 3
- ISSN:
- 1540-7063
- Page Range / eLocation ID:
- 684 to 695
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Synopsis The concept of modularity is fundamental to understanding the evolvability of morphological structures and is considered a central framework for the exploration of functionally and developmentally related subsets of anatomical traits. In this study, we explored evolutionary patterns of modularity and integration in the 4-bar linkage biomechanical system of the skull in the fish family Labridae (wrasses and parrotfishes). We measured evolutionary modularity and rates of shape diversification of the skull partitions of three biomechanical 4-bar linkage systems using 205 species of wrasses (family: Labridae) and a three-dimensional geometric morphometrics data set of 200 coordinates. We found support for a two-module hypothesis on the family level that identifies the bones associated with the three linkages as being a module independent from a module formed by the remainder of the skull (neurocranium, nasals, premaxilla, and pharyngeal jaws). We tested the patterns of skull modularity for four tribes in wrasses: hypsigenyines, julidines, cheilines, and scarines. The hypsigenyine and julidine groups showed the same two-module hypothesis for Labridae, whereas cheilines supported a four-module hypothesis with the three linkages as independent modules relative to the remainder of the skull. Scarines showed increased modularization of skull elements, where each bone is its own module. Diversification rates of modules show that linkage modules have evolved at a faster net rate of shape change than the remainder of the skull, with cheilines and scarines exhibiting the highest rate of evolutionary shape change. We developed a metric of linkage planarity and found the oral jaw linkage system to exhibit high planarity, while the rest position of the hyoid linkage system exhibited increased three dimensionality. This study shows a strong link between phenotypic evolution and biomechanical systems, with modularity influencing rates of shape change in the evolution of the wrasse skull.more » « less
- 
            null (Ed.)We introduce a new inverse modeling method to interactively design crowd animations. Few works focus on providing succinct high-level and large-scale crowd motion modeling. Our methodology is to read in real or virtual agent trajectory data and automatically infer a set of parameterized crowd motion models. Then, components of the motion models can be mixed, matched, and altered enabling rapidly producing new crowd motions. Our results show novel animations using real-world data, using synthetic data, and imitating real-world scenarios. Moreover, by combining our method with our interactive crowd trajectory sketching tool, we can create complex spatio-temporal crowd animations in about a minute.more » « less
- 
            ABSTRACT The extinct nonavian dinosaurTyrannosaurus rex, considered one of the hardest biting animals ever, is often hypothesized to have exhibited cranial kinesis, or, mobility of cranial joints relative to the braincase. Cranial kinesis inT.rexis a biomechanical paradox in that forcefully biting tetrapods usually possess rigid skulls instead of skulls with movable joints. We tested the biomechanical performance of a tyrannosaur skull using a series of static positions mimicking possible excursions of the palate to evaluate Postural Kinetic Competency inTyrannosaurus. A functional extant phylogenetic bracket was employed using taxa, which exhibit measurable palatal excursions:Psittacus erithacus(fore–aft movement) andGekko gecko(mediolateral movement). Static finite element models ofPsittacus,Gekko, andTyrannosauruswere constructed and tested with different palatal postures using anatomically informed material properties, loaded with muscle forces derived from dissection, phylogenetic bracketing, and a sensitivity analysis of muscle architecture and tested in orthal biting simulations using element strain as a proxy for model performance. Extant species models showed lower strains in naturally occurring postures compared to alternatives. We found that fore–aft and neutral models ofTyrannosaurusexperienced lower overall strains than mediolaterally shifted models. Protractor muscles dampened palatal strains, while occipital constraints increased strains about palatocranial joints compared to jaw joint constraints. These loading behaviors suggest that even small excursions can strain elements beyond structural failure. Thus, these postural tests of kinesis, along with the robusticity of other cranial features, suggest that the skull ofTyrannosauruswas functionally akinetic. Anat Rec, 303:999–1017, 2020. © 2019 Wiley Periodicals, Inc.more » « less
- 
            Khila, Abderrahman (Ed.)Evolutionary innovations underlie the rise of diversity and complexity—the 2 long-term trends in the history of life. How does natural selection redesign multiple interacting parts to achieve a new emergent function? We investigated the evolution of a biomechanical innovation, the latch-spring mechanism of trap-jaw ants, to address 2 outstanding evolutionary problems: how form and function change in a system during the evolution of new complex traits, and whether such innovations and the diversity they beget are repeatable in time and space. Using a new phylogenetic reconstruction of 470 species, and X-ray microtomography and high-speed videography of representative taxa, we found the trap-jaw mechanism evolved independently 7 to 10 times in a single ant genus ( Strumigenys ), resulting in the repeated evolution of diverse forms on different continents. The trap mechanism facilitates a 6 to 7 order of magnitude greater mandible acceleration relative to simpler ancestors, currently the fastest recorded acceleration of a resettable animal movement. We found that most morphological diversification occurred after evolution of latch-spring mechanisms, which evolved via minor realignments of mouthpart structures. This finding, whereby incremental changes in form lead to a change of function, followed by large morphological reorganization around the new function, provides a model for understanding the evolution of complex biomechanical traits, as well as insights into why such innovations often happen repeatedly.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    