skip to main content


Title: What are the best combinations of fuel-vehicle technologies to mitigate climate change and air pollution effects across the United States?
Abstract

The transportation sector is the largest contributor to CO2emissions and a major source of criteria air pollutants in the United States. The impact of climate change and that of air pollution differ in space and time, but spatially-explicit, systematic evaluations of the effectiveness of alternative fuels and advanced vehicle technologies in mitigating both climate change and air pollution are lacking. In this work, we estimate the life cycle monetized damages due to greenhouse gas emissions and criteria air pollutant emissions for different types of passenger-moving vehicles in the United States. We find substantial spatial variability in the monetized damages for all fuel-vehicle technologies studied. None of the fuel-vehicle technologies leads simultaneously to the lowest climate change damages and the lowest air pollution damages across all U.S. counties. Instead, the fuel-vehicle technology that best mitigates climate change in one region is different from that for the best air quality (i.e. the trade-off between decarbonization and air pollution mitigation). For example, for the state of Pennsylvania, battery-electric cars lead to the lowest population-weighted-average climate change damages (a climate change damage of 0.87 cent/mile and an air pollution damage of 1.71 cent/mile). In contrast, gasoline hybrid-electric cars lead to the lowest population-weighted-average air pollution damages (a climate change damage of 0.92 cent/mile and an air pollution damage of 0.77 cent/mile). Vehicle electrification has great potential to reduce climate change damages but may increase air pollution damages substantially in regions with high shares of coal-fired power plants compared to conventional vehicles. However, clean electricity grid could help battery electric vehicles to achieve low damages in both climate change and air pollution.

 
more » « less
NSF-PAR ID:
10171135
Author(s) / Creator(s):
;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research Letters
Volume:
15
Issue:
7
ISSN:
1748-9326
Page Range / eLocation ID:
Article No. 074046
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The mass reduction of passenger vehicles has been a great focus of academic research and federal policy initiatives of the United States with coordinated funding efforts and even a focus of a Manufacturing USA Institute. The potential benefit of these programs can be described as modest from a societal point of view, for example reducing vehicle mass by up to 25% with modest cost implications (under $5 per pound saved) and the ability to implement with existing manufacturing methods. Much more aggressive reductions in greenhouse gas production are necessary and possible, while delivering the same service. This is demonstrated with a higher-level design thinking exercise on an environmentally responsible lightweight vehicle, leading to the following criteria: lightweight, low aerodynamic drag, long-lived (over 30 years and 2 million miles), adaptable, electric, and used in a shared manner on average over 8 h per day. With these specifications, passenger-mile demand may be met with around 1/10 of the current fleet. Such vehicles would likely have significantly different designs and construction than incumbent automobiles. It is likely future automotive production will be more analogous to current aircraft production with higher costs per pound and lower volumes, but with dramatically reduced financial and environmental cost per passenger mile, with less material per vehicle, and far less material required in the national or worldwide fleets. Subsidiary benefits of this vision include far fewer parking lots, greater accessibility to personal transportation, and improved pedestrian safety, while maintaining a vibrant and engaging economy. The systemic changes to the business models and research and development directions (including lightweight design and manufacturing) are discussed, which could bring forth far more sustainable personal transportation.

     
    more » « less
  2. Abstract

    Vehicle electrification is a common climate change mitigation strategy, with policymakers invoking co‐beneficial reductions in carbon dioxide (CO2) and air pollutant emissions. However, while previous studies of U.S. electric vehicle (EV) adoption consistently predict CO2mitigation benefits, air quality outcomes are equivocal and depend on policies assessed and experimental parameters. We analyze climate and health co‐benefits and trade‐offs of six U.S. EV adoption scenarios: 25% or 75% replacement of conventional internal combustion engine vehicles, each under three different EV‐charging energy generation scenarios. We transfer emissions from tailpipe to power generation plant, simulate interactions of atmospheric chemistry and meteorology using the GFDL‐AM4 chemistry climate model, and assess health consequences and uncertainties using the U.S. Environmental Protection Agency Benefits Mapping Analysis Program Community Edition (BenMAP‐CE). We find that 25% U.S. EV adoption, with added energy demand sourced from the present‐day electric grid, annually results in a ~242 M ton reduction in CO2emissions, 437 deaths avoided due to PM2.5reductions (95% CI: 295, 578), and 98 deaths avoided due to lesser ozone formation (95% CI: 33, 162). Despite some regions experiencing adverse health outcomes, ~$16.8B in damages avoided are predicted. Peak CO2reductions and health benefits occur with 75% EV adoption and increased emission‐free energy sources (~$70B in damages avoided). When charging‐electricity from aggressive EV adoption is combustion‐only, adverse health outcomes increase substantially, highlighting the importance of low‐to‐zero emission power generation for greater realization of health co‐benefits. Our results provide a more nuanced understanding of the transportation sector's climate change mitigation‐health impact relationship.

     
    more » « less
  3. Understanding the preferences for new and future transportation technologies is important to ensure an efficient and equitable future transportation system. A survey was conducted of Americans’ preferences for several such technologies. Americans are concerned about vehicle range and charging station availability for electric vehicles (EVs) and hesitant about autonomous vehicle (AV) safety. Opinions about many transportation technologies, such as vertical takeoff and landing (i.e., air taxis), shared parking, and air-drone delivery are mixed. These less familiar technologies require continued tracking of preferences. A 55% increase is estimated in the probability of an individual choosing a battery electric vehicle (BEV) pickup truck if its fuel economy increases by about 9%. This result supports a market for BEV pickup trucks currently under development by many automakers. The preference for vehicle autonomation appears to depend on the use case. Driving task automation is preferred by residents of low-density, car-dependent areas where long commutes are common. In contrast, automated parking technologies are favored by those living in denser communities. Intermittent bus lanes are favored by those living in high population density areas, but not among those in areas with high shares of zero-vehicle households. These results provide indications of where to direct future research in the field.

     
    more » « less
  4. The environmental impact of battery electric vehicles (BEVs) largely depends on the environmental profile of the national electric power grid that enables their operation. The purpose of this study is to analyze the environmental performance of BEV usage in Korea considering the changes and trajectory of the national power roadmap. We examined the environmental performance using a weighted environmental index, considering eight impact categories. The results showed that the weighted environmental impact of Korea’s national power grid supply would increase overall by 66% from 2015 to 2029 using the plan laid out by the 7th Power Roadmap, and by only 33% from 2017 to 2031 using the 8th Power Roadmap plan. This change reflects the substantial amount of renewables in the more recent power mix plan. In 2016, BEV usage in Korea resulted in emissions reductions of about 37% compared with diesel passenger vehicles, and 41% compared with gasoline vehicles per kilometer driven (100 g CO2e/km versus 158 g and 170 g CO2e/km, respectively) related to transportation sector. By 2030, BEV usage in Korea is expected to achieve a greater emissions reduction of about 53% compared with diesel vehicles and 56% compared with gasoline vehicles. However, trade-offs are also expected because of increased particulate matter (PM) pollution, which we anticipate to increase by 84% compared with 2016 conditions. Despite these projected increases in PM emissions, increased BEV usage in Korea is expected to result in important global and local benefits through reductions of climate-changing greenhouse gas (GHG) emissions. 
    more » « less
  5. Abstract

    Scaling up electric vehicles (EVs) provides an avenue to mitigate both carbon emissions and air pollution from road transport. The benefits of EV adoption for climate, air quality, and health have been widely documented. Yet, evidence on the distribution of these impacts has not been systematically reviewed, despite its central importance to ensure a just and equitable transition. Here, we perform a systematic review of recent EV studies that have examined the spatial distribution of the emissions, air pollution, and health impacts, as an important aspect of the equity implications. Using the Context-Interventions-Mechanisms-Outcome framework with a two-step search strategy, we narrowed down to 47 papers that met our inclusion criteria for detailed review and synthesis. We identified two key factors that have been found to influence spatial distributions. First, the cross-sectoral linkages may result in unintended impacts elsewhere. For instance, the generation of electricity to charge EVs, and the production of batteries and other materials to manufacture EVs could increase the emissions and pollution in locations other than where EVs are adopted. Second, since air pollution and health are local issues, additional location-specific factors may play a role in determining the spatial distribution, such as the wind transport of pollution, and the size and vulnerability of the exposed populations. Based on our synthesis of existing evidence, we highlight two important areas for further research: (1) fine-scale pollution and health impact assessment to better characterize exposure and health disparities across regions and population groups; and (2) a systematic representation of the EV value chain that captures the linkages between the transport, power and manufacturing sectors as well as the regionally-varying activities and impacts.

     
    more » « less