skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Anticipating Current and Coming Technologies that Affect U.S. Travel Choices
Understanding the preferences for new and future transportation technologies is important to ensure an efficient and equitable future transportation system. A survey was conducted of Americans’ preferences for several such technologies. Americans are concerned about vehicle range and charging station availability for electric vehicles (EVs) and hesitant about autonomous vehicle (AV) safety. Opinions about many transportation technologies, such as vertical takeoff and landing (i.e., air taxis), shared parking, and air-drone delivery are mixed. These less familiar technologies require continued tracking of preferences. A 55% increase is estimated in the probability of an individual choosing a battery electric vehicle (BEV) pickup truck if its fuel economy increases by about 9%. This result supports a market for BEV pickup trucks currently under development by many automakers. The preference for vehicle autonomation appears to depend on the use case. Driving task automation is preferred by residents of low-density, car-dependent areas where long commutes are common. In contrast, automated parking technologies are favored by those living in denser communities. Intermittent bus lanes are favored by those living in high population density areas, but not among those in areas with high shares of zero-vehicle households. These results provide indications of where to direct future research in the field.  more » « less
Award ID(s):
2137274 1650483
PAR ID:
10494391
Author(s) / Creator(s):
; ;
Publisher / Repository:
Sage Publications
Date Published:
Journal Name:
Transportation Research Record: Journal of the Transportation Research Board
Volume:
2677
Issue:
12
ISSN:
0361-1981
Page Range / eLocation ID:
449 to 462
Subject(s) / Keyword(s):
intelligent transportation systems advanced technology automated/autonomous vehicles planning and analysis effects of information and communication technologies (ICT) on travel choices communications/communications technology emerging technology technology adoption
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Battery electric vehicles (BEVs) have emerged as a promising alternative to traditional internal combustion engine (ICE) vehicles due to benefits in improved fuel economy, lower operating cost, and reduced emission. BEVs use electric motors rather than fossil fuels for propulsion and typically store electric energy in lithium-ion cells. With rising concerns over fossil fuel depletion and the impact of ICE vehicles on the climate, electric mobility is widely considered as the future of sustainable transportation. BEVs promise to drastically reduce greenhouse gas emissions as a result of the transportation sector. However, mass adoption of BEVs faces major barriers due to consumer worries over several important battery-related issues, such as limited range, long charging time, lack of charging stations, and high initial cost. Existing solutions to overcome these barriers, such as building more charging stations, increasing battery capacity, and stationary vehicle-to-vehicle (V2V) charging, often suffer from prohibitive investment costs, incompatibility to existing BEVs, or long travel delays. In this paper, we propose P eer-to- P eer C ar C harging (P2C2), a scalable approach for charging BEVs that alleviates the need for elaborate charging infrastructure. The central idea is to enable BEVs to share charge among each other while in motion through coordination with a cloud-based control system. To re-vitalize a BEV fleet, which is continuously in motion, we introduce Mobile Charging Stations (MoCS), which are high-battery-capacity vehicles used to replenish the overall charge in a vehicle network. Unlike existing V2V charging solutions, the charge sharing in P2C2 takes place while the BEVs are in-motion, which aims at minimizing travel time loss. To reduce BEV-to-BEV contact time without increasing manufacturing costs, we propose to use multiple batteries of varying sizes and charge transfer rates. The faster but smaller batteries are used for charge transfer between vehicles, while the slower but larger ones are used for prolonged charge storage. We have designed the overall P2C2 framework and formalized the decision-making process of the cloud-based control system. We have evaluated the effectiveness of P2C2 using a well-characterized simulation platform and observed dramatic improvement in BEV mobility. Additionally, through statistical analysis, we show that a significant reduction in carbon emission is also possible if MoCS can be powered by renewable energy sources. 
    more » « less
  2. Advances in information technologies and vehicle automation have birthed new transportation services, including shared autonomous vehicles (SAVs). Shared autonomous vehicles are on-demand self-driving taxis, with flexible routes and schedules, able to replace personal vehicles for many trips in the near future. The siting and density of pick-up and drop-off (PUDO) points for SAVs, much like bus stops, can be key in planning SAV fleet operations, since PUDOs impact SAV demand, route choices, passenger wait times, and network congestion. Unlike traditional human-driven taxis and ride-hailing vehicles like Lyft and Uber, SAVs are unlikely to engage in quasi-legal procedures, like double parking or fire hydrant pick-ups. In congested settings, like central business districts (CBD) or airport curbs, SAVs and others will not be allowed to pick up and drop off passengers wherever they like. This paper uses an agent-based simulation to model the impact of different PUDO locations and densities in the Austin, Texas CBD, where land values are highest and curb spaces are coveted. In this paper 18 scenarios were tested, varying PUDO density, fleet size and fare price. The results show that for a given fare price and fleet size, PUDO spacing (e.g., one block vs. three blocks) has significant impact on ridership, vehicle-miles travelled, vehicle occupancy, and revenue. A good fleet size to serve the region’s 80 core square miles is 4000 SAVs, charging a $1 fare per mile of travel distance, and with PUDOs spaced three blocks of distance apart from each other in the CBD. 
    more » « less
  3. The ongoing electrification of the transportation fleet will increase the load on the electric power grid. Since both the transportation network and the power grid already experience periods of significant stress, joint analyses of both infrastructures will most likely be necessary to ensure acceptable operation in the future. To enable such analyses, this article presents an open-source testbed that jointly simulates high-fidelity models of both the electric distribution system and the transportation network. The testbed utilizes two open-source simulators, OpenDSS to simulate the electric distribution system and the microscopic traffic simulator SUMO to simulate the traffic dynamics. Electric vehicle charging links the electric distribution system and the transportation network models at vehicle locations determined using publicly available parcel data. Leveraging high-fidelity synthetic electric distribution system data from the SMART-DS project and transportation system data from OpenStreetMap, this testbed models the city of Greensboro, NC down to the household level. Moreover, the methodology and the supporting scripts released with the testbed allow adaption to other areas where high-fidelity geolocated OpenDSS datasets are available. After describing the components and usage of the testbed, we exemplify applications enabled by the testbed via two scenarios modeling the extreme stresses encountered during evacuations. 
    more » « less
  4. The ongoing electrification of the transportation fleet will increase the load on the electric power grid. Since both the transportation network and the power grid already experience periods of significant stress, joint analyses of both infrastructures will most likely be necessary to ensure acceptable operation in the future. To enable such analyses, this paper presents an open- source testbed that jointly simulates high-fidelity models of both the electric distribution system and the transportation network. The testbed utilizes two open-source simulators, OpenDSS to simulate the electric distribution system and the microscopic traffic simulator SUMO to simulate the traffic dynamics. Electric vehicle charging links the electric distribution system and the transportation network models at vehicle locations determined using publicly available parcel data. Leveraging high-fidelity synthetic electric distribution system data from the SMART-DS project and transportation system data from OpenStreetMap, this testbed models the city of Greensboro, NC down to the household level. Moreover, the methodology and the supporting scripts released with the testbed allow adaption to other areas where high-fidelity geolocated OpenDSS datasets are available. After describing the components and usage of the testbed, we exemplify applications enabled by the testbed via two scenarios modeling the extreme stresses encountered during evacuations. 
    more » « less
  5. Driverless or fully automated vehicles (AVs) are expected to fundamentally change how individuals and households travel and how vehicles use roadway infrastructure. The first goal of this study is to develop a modeling framework of activity-constrained household travel in a future multi-modal network with private AVs, shared-use AVs, transit, and intermodal AV-transit travel options. The second goal is to analyze the potential impacts of AVs—including intermodal AV-transit travel—on (a) household-level travel behavior, (b) household travel costs, (c) demand for transport modes, including transit, and (d) vehicle kilometers traveled or VKT. To meet the first goal, we propose and formulate the Household Activity Pattern Problem with AV-enabled Intermodal Trips (HAPP-AV-IT) that incorporates AV deadheading and intermodal AV-transit trips. The modeling framework extends prior HAPP-based formulations that model household-level travel decisions as vehicle (and person) routing and scheduling problems, similar to the pickup and delivery problem with time-windows. To meet the second goal, we apply the HAPP-AV-IT to two case studies and conduct many computational experiments. We use synthetic activity location data for synthetic households and a fictitious medium-size network with a road network, transit network, residential locations, activity locations, and parking locations. The computational results illustrate (a) the critical role that household AV ownership plays in terms of household travel decisions, modal demand, and VKT, (b) that with AVs, deadheading accounts for 30–40 % of vehicle operating distances, (c) that around 10 % of households in the study region benefit from AV-based intermodal trips, and (d) that those 10 % of households see 5 % reductions in household travel costs and 25 % reductions in VKT on average in the most transit friendly scenario. This last finding suggests that intermodal AV-transit trips may exist in a driverless vehicle future, and therefore, transit agencies and transportation planners should consider how to serve this market. We also propose and test a simple heuristic algorithm that quickly solves HAPP-AV-IT problem instances. 
    more » « less