- Award ID(s):
- 1831623
- Publication Date:
- NSF-PAR ID:
- 10171164
- Journal Name:
- Earth surface dynamics discussions
- ISSN:
- 2196-6338
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract. The morphology of deltas is determined by the spatial extent and variability of the geomorphic processes that shape them. While in some cases resilient, deltas are increasingly threatened by natural and anthropogenic forces, such as sea level rise and land use change, which can drastically alter the rates and patterns of sediment transport. Quantifying process patterns can improve our predictive understanding of how different zones within delta systems will respond to future change. Available remotely sensed imagery can help, but appropriate tools are needed for pattern extraction and analysis. We present a method for extracting information about the nature and spatial extent of active geomorphic processes across deltas with 10 parameters quantifying the geometry of each of 1239 islands and the channels around them using machine learning. The method consists of a two-step unsupervised machine learning algorithm that clusters islands into spatially continuous zones based on the 10 morphological metrics extracted from remotely sensed imagery. By applying this method to the Ganges–Brahmaputra–Meghna Delta, we find that the system can be divided into six major zones. Classification results show that active fluvial island construction and bar migration processes are limited to relatively narrow zones along the main Ganges River and Brahmaputra and Meghnamore »
-
Abstract Arising from the non‐uniform dispersal of sediment and water that build deltaic landscapes, morphological change is a fundamental characteristic of river delta behavior. Thus, sustainable deltas require mobility of their channel networks and attendant shifts in landforms. Both behaviors can be misrepresented as degradation, particularly in context of the “stability” that is generally necessitated by human infrastructure and economies. Taking the Ganges‐Brahmaputra‐Meghna Delta as an example, contrary to public perception, this delta system appears to be sustainable at a system scale with high sediment delivery and long‐term net gain in land area. However, many areas of the delta exhibit local dynamics and instability at the scale at which households and communities experience environmental change. Such local landscape “instability” is often cited as evidence that the delta is in decline, whereas much of this change simply reflects the morphodynamics typical of an energetic fluvial‐delta system and do not provide an accurate reflection of overall system health. Here we argue that this disparity between unit‐scale sustainability and local morphodynamic change may be typical of deltaic systems with well‐developed distributary networks and strong spatial gradients in sediment supply and transport energy. Such non‐uniformity and the important connections between network sub‐units (i.e., fluvial,more »
-
River deltas are dynamic systems whose channels can widen, narrow, migrate, avulse, and bifurcate to form new channel networks through time. With hundreds of millions of people living on these globally ubiquitous systems, it is critically important to understand and predict how delta channel networks will evolve over time. Although much work has been done to understand drivers of channel migration on the individual channel scale, a global-scale analysis of the current state of delta morphological change has not been attempted. In this study, we present a methodology for the automatic extraction of channel migration vectors from remotely sensed imagery by combining deep learning and principles from particle image velocimetry (PIV). This methodology is implemented on 48 river delta systems to create a global dataset of decadal-scale delta channel migration. By comparing delta channel migration distributions with a variety of known external forcings, we find that global patterns of channel migration can largely be reconciled with the level of fluvial forcing acting on the delta, sediment flux magnitude, and frequency of flood events. An understanding of modern rates and patterns of channel migration in river deltas is critical for successfully predicting future changes to delta systems and for informing decisionmore »
-
A recently funded US National Science Foundation project seeks to investigate monsoon variability within the Ganges-Brahmaputra-Meghna (GBM) river basin as a potential predictor for annual shoreline erosion rates in the lower coastal delta region. Many previous studies have examined the interannual variability of South Asian precipitation either within political boundaries or across large spans of latitudes and longitudes, but few have taken a more hydrologic approach by analyzing the atmospheric-oceanic forcings that lead to precipitation falling only within the GBM basin. The temporal climate patterns would likely be different from previous studies and are hypothesized to have a more direct effect on outlet discharge and erosion rates. In the present study, mean monsoon precipitation (June-July-August-September) for the 2,309 0.25° grid boxes of the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) was extracted using geospatial methods. A Principal Component (PC) analysis was performed over the period 1983 to 2015. The first PC explains 88.7% of the variance and resembles climatology with the center of action over Bangladesh. The eigenvector shows a downward trend consistent with studies reporting a recent decline in monsoon rainfall. The second PC explains 2.9% of the variance and concentrates rainfall inmore »
-
Abstract Coastal wetlands are nourished by rivers and periodical tidal flows through complex, interconnected channels. However, in hydrodynamic models, channel dimensions with respect to model grid size and uncertainties in topography preclude the correct propagation of tidal and riverine signals. It is therefore crucial to enhance channel geomorphic connectivity and simplify sub‐channel features based on remotely sensed networks for practical computational applications. Here, we utilize channel networks derived from diverse remote sensing imagery as a baseline to build a ∼10 m resolution hydrodynamic model that covers the Wax Lake Delta and adjacent wetlands (∼360 km2) in coastal Louisiana, USA. In this richly gauged system, intensive calibrations are conducted with 18 synchronous field‐observations of water levels taken in 2016, and discharge data taken in 2021. We modify channel geometry, targeting realism in channel connectivity. The results show that a minimum channel depth of 2 m and a width of four grid elements (approximatively 40 m) are required to enable a realistic tidal propagation in wetland channels. The optimal depth for tidal propagation can be determined by a simplified cost function method that evaluates the competition between flow travel time and alteration of the volume of the channels. The integration of high spatial‐resolution models and remotemore »