skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Observation of intensity dependent phase-separation in photoreactive monomer–nanoparticle formulations under non-uniform visible light irradiation
We report observations of photopolymerization driven phase-separation in a mixture of a photo-reactive monomer and inorganic nanoparticles. The mixture is irradiated with visible light possessing a periodic intensity profile that elicits photopolymerization along the depth of the mixture, establishing a competition between photo-crosslinking and thermodynamically favorable phase-separating behavior inherent to the system. In situ Raman spectroscopy was used to monitor the polymerization reaction and morphology evolution, and reveals a key correlation between irradiation intensity and composite morphology extending the entire depth of the mixture, i.e. unhindered phase-separation at low irradiation intensity and arrested phase-separation at high irradiation intensity. 3D Raman volume mapping and energy dispersive X-ray mapping confirm that the intensity-dependent irradiation process dictates the extent of phase separation, enabling single-parameter control over phase evolution and subsequent composite morphology. These observations can potentially enable a single-step route to develop polymer–inorganic composite materials with tunable morphologies.  more » « less
Award ID(s):
1751621
PAR ID:
10171180
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Soft Matter
ISSN:
1744-683X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Evolution of composition, rheology, and morphology during phase separation in complex fluids is highly coupled to rheological and mass transport processes within the emerging phases, and understanding this coupling is critical for materials design of multiphase complex fluids. Characterizing these dependencies typically requires careful measurement of a large number of equilibrium and transport properties that are difficult to measure in situ as phase separation proceeds. Here, we propose and demonstrate a high-throughput microscopy platform to achieve simultaneous, in situ mapping of time-evolving morphology and microrheology in phase separating complex fluids over a large compositional space. The method was applied to a canonical example of polyelectrolyte complex coacervation, whereby mixing of oppositely charged species leads to liquid–liquid phase separation into distinct solute-dense and dilute phases. Morphology and rheology were measured simultaneously and kinetically after mixing to track the progression of phase separation. Once equilibrated, the dense phase viscosity was determined to high compositional accuracy using passive probe microrheology, and the results were used to derive empirical relationships between the composition and viscosity. These relationships were inverted to reconstruct the dense phase boundary itself, and further extended to other mixture compositions. The resulting predictions were validated by independent equilibrium compositional measurements. This platform paves the way for rapid screening and formulation of complex fluids and (bio)macromolecular materials, and serves as a critical link between formulation and rheology for multi-phase material discovery. 
    more » « less
  2. Photo-oxa-dibenzocyclooctyne (Photo-ODIBO) undergoes photodecarbonylation under UV excitation to its bright S 2 state, forming a highly reactive cyclooctyne, ODIBO. Following 321 nm excitation with sub-50 fs actinic pulses, the excited state evolution and cyclopropenone bond cleavage with CO release were characterized using femtosecond stimulated Raman spectroscopy and time-dependent density functional theory Raman calculations. Analysis of the photo-ODIBO S 2 CO Raman band revealed multi-exponential intensity, peak splitting and frequency-shift dynamics. This suggests a stepwise cleavage of the two C–C bonds in the cyclopropenone structure that is completed within <300 fs after excitation. Evidence of intramolecular vibrational relaxation on the S 2 state, concurrent with photodecarbonylation, with dynamics matching previous electronic transient absorption spectroscopy, was also observed. This confirms an excited state, as opposed to ground state, photodecarbonylation mechanism resulting in a vibronically excited photoproduct, ODIBO. 
    more » « less
  3. Developing protocols for designing high‐efficiency, durable, cost‐effective electrocatalysts for oxygen evolution reaction (OER) necessitates deeper understanding of structure–property correlation as a function of composition. Herein, it has been demonstrated that incorporating tellurium into binary nickel chalcogenide (NiSe) and creating a mixed anionic phase perturbs its electronic structure and significantly enhances the OER activity. A series of nanostructured nickel chalcogenides comprising a layer‐by‐layer morphology along with mixed anionic ternary phase are grown in situ on nickel foam with varying morphological textures using simple hydrothermal synthesis route. Comprehensive X‐ray diffraction, X‐ray photoelectron spectroscopy, and in situ Raman spectroscopy analysis confirms the formation of a trigonal single‐phase nanocrystalline nickel (telluro)‐selenide (NiSeTe) as a truly mixed anionic composition. The NiSeTe electrocatalyst exhibits excellent OER performance, with a low overpotential of 300 mV at 50 mA cm−2and a small Tafel slope of 98 mV dec−1in 1 mKOH electrolyte. The turnover frequency and mass activity are 0.047 s−1and 90.3 Ag−1, respectively. Detailed electrochemical measurements also reveal enhanced charge transfer properties of the NiSeTe phase compared to the mixture of binaries. Density functional theory calculations reveal favorable OH adsorption energy in the mixed anionic phase compared to the binary chalcogenides confirming superior electrocatalytic property. 
    more » « less
  4. Solid inorganic and polymeric electrolytes have the potential to enable rechargeable batteries with higher energy densities, compared to current lithium-ion technology, which uses liquid electrolyte. Inorganic materials such as ceramics and glasses conduct lithium ions well, but they are brittle, which makes incorporation into a battery difficult. Polymers have the flexibility for facile use in a battery, but their transport properties tend to be inferior to inorganics. Thus, there is growing interest in composite electrolytes with inorganic and organic phases in intimate contact. This article begins with a discussion of ion transport in single-phase electrolytes. A dimensionless number (the Newman number) is presented for quantifying the efficacy of electrolytes. An effective medium framework for predicting transport properties of composite electrolytes containing only one conducting phase is then presented. The opportunities and challenges presented by composite electrolytes containing two conducting phases are addressed. Finally, the importance and status of reaction kinetics at the interfaces between solid electrolytes and electrodes are covered, using a lithium-metal electrode as an example. 
    more » « less
  5. The evolution of non-uniform shocks produced by modulated laser irradiation or surface perturbations is relevant to studies of inertial confinement fusion and material properties at high-energy-density conditions. We present results from an experiment conducted at the OMEGA EP laser facility, where a 300 GPa shock was driven into a fused silica sample with pre-fabricated single-mode surface modulations. Using time-resolved optical velocimetry, we captured the continuous evolution of rippled shock motion, enabling a comprehensive mapping of the spatial amplitude history from formation to phase reversal in a single experiment. Initially, the ablation-driven shock inherits a fraction of the surface modulation amplitude from the sample, which subsequently grows before decaying, ultimately leading to the flattening of the rippled shock and a phase reversal. We find that two-dimensional inviscid hydrodynamic simulation of the experiment is able to qualitatively capture many aspects of the rippled shock evolution but over-predicts the initial amplitude growth. This experimental platform, capable of accommodating varying ripple wavelengths, lays the groundwork for a potential viscometry method at extreme pressures, where viscous effects manifest as differences in shock flattening times between rippled shocks of two distinct wavelengths propagating through the sample. 
    more » « less