A class of nonlinear, stochastic staticization control
problems (including minimization problems with smooth, convex,
coercive payoffs) driven by diffusion dynamics and constant
diffusion coefficient is considered. Using dynamic programming
and tools from static duality, a fundamental solution form is
obtained where the same solution can be used for a variety of
terminal costs without resolution of the problem. Further, this
fundamental solution takes the form of a deterministic control
problem rather than a stochastic control problem.
more »
« less
Conversion of Certain Stochastic Control Problems into Deterministic Control Problems
A class of nonlinear, stochastic staticization control problems (including minimization problems with smooth, convex, coercive payoffs) driven by diffusion dynamics with constant diffusion coefficient is considered. A fundamental solution form is obtained where the same solution can be used for a limited variety of terminal costs without resolution of the problem. One may convert this fundamental solution form from a stochastic control problem form to a deterministic control problem form. This yields an equivalence between certain secondorder (in space) HamiltonJacobi partial differential equations (HJ PDEs) and associated firstorder HJ PDEs. This reformulation has substantial numerical implications.
more »
« less
 Award ID(s):
 1908918
 NSFPAR ID:
 10171200
 Date Published:
 Journal Name:
 21st IFAC World Congress
 Page Range / eLocation ID:
 16
 Format(s):
 Medium: X
 Sponsoring Org:
 National Science Foundation
More Like this


By exploiting minplus linearity, semiconcavity, and semigroup properties of dynamic programming, a fundamental solution semigroup for a class of approximate finite horizon linear infinite dimensional optimal control problems is constructed. Elements of this fundamental solution semigroup are parameterized by the time horizon, and can be used to approximate the solution of the corresponding finite horizon optimal control problem for any terminal cost. They can also be composed to compute approximations on longer horizons. The value function approximation provided takes the form of a minplus convolution of a kernel with the terminal cost. A general construction for this kernel is provided, along with a spectral representation for a restricted class of subproblems.more » « less

In this paper, we consider the optimal control of semilinear fractional PDEs with both spectral and integral fractional diffusion operators of order 2 s with s ∈ (0, 1). We first prove the boundedness of solutions to both semilinear fractional PDEs under minimal regularity assumptions on domain and data. We next introduce an optimal growth condition on the nonlinearity to show the Lipschitz continuity of the solution map for the semilinear elliptic equations with respect to the data. We further apply our ideas to show existence of solutions to optimal control problems with semilinear fractional equations as constraints. Under the standard assumptions on the nonlinearity (twice continuously differentiable) we derive the first and second order optimality conditions.more » « less

Inverse problems of identifying parameters in partial differential equations (PDEs) is an important class of problems with many realworld applications. Inverse problems are commonly studied in optimization setting with various known approaches having their advantages and disadvantages. Although a nonconvex output leastsquares (OLS) objective has often been used, a convex modified output leastsquares (MOLS) attracted quite an attention in recent years. However, the convexity of the MOLS has only been established for parameters appearing linearly in the PDEs. The primary objective of this work is to introduce and analyze a variant of the MOLS for the inverse problem of identifying parameters that appear nonlinearly in variational problems. Besides giving an existence result for the inverse problem, we derive the firstorder and secondorder derivative formulas for the new functional and use them to identify the conditions under which the new functional is convex. We give a discretization scheme for the continuous inverse problem and prove its convergence. We also obtain discrete formulas for the new MOLS functional and present detailed numerical examples.more » « less

We consider the problem of finitehorizon optimal control of a discrete linear timevarying system subject to a stochastic disturbance and fully observable state. The initial state of the system is drawn from a known Gaussian distribution, and the final state distribution is required to reach a given target Gaussian distribution, while minimizing the expected value of the control effort. We derive the linear optimal control policy by first presenting an efficient solution for the diffusionless case, and we then solve the case with diffusion by reformulating the system as a superposition of diffusionless systems. We show that the resulting solution coincides with a LQG problem with particular terminal cost weight matrix.more » « less