skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Time-Series Distribution Test System Based on Real Utility Data
In this paper, we provide a time-series distribution test system. This test system is a fully observable distribution grid in Midwest U.S. with smart meters (SM) installed at all end users. Our goal is to share a real U.S. distribution grid model without modification. This grid model is comprehensive and representative since it consists of both overhead lines and underground cables, and it has standard distribution grid components such as capacitor banks, line switches, substation transformers with load tap changer and secondary distribution transformers. An important uniqueness of this grid model is it has one-year smart meter measurements at all nodes, thus bridging the gap between existing test feeders and quasi-static time-series based distribution system analysis.  more » « less
Award ID(s):
1745451
PAR ID:
10171227
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2019 North American Power Symposium (NAPS)
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In the process of protecting power systems against different types of cyberattacks, the primary step is to precisely model such frameworks from attacker's perspective. This paper investigates a false data injection (FDI) attack framework, which can target under-load tap changing (ULTC) transformers, resulting in manipulated voltage profile in radial smart distribution networks. The developed FDI model compromises the voltage profile of a distribution feeder through misleading the volt/var optimization, that optimally manages system-wide voltage profile and flow of reactive power. The presented attack model is formulated as a bi-objective optimization problem. The objective functions from the attacker's point of view are 1) minimizing the level of false data to be injected into the smart meters associated with load data and 2) maximizing the voltage deviation of the distribution grid. Negative impacts of such a cyberattack model have been validated and discussed in this work on an IEEE distribution test system, necessitating proper remedial actions, which will be elaborated in the next step of this research. 
    more » « less
  2. The fast-growing installation of solar PVs has a significant impact on the operation of distribution systems. Grid-tied solar inverters provide reactive power capability to support the voltage profile in a distribution system. In comparison with traditional inverters, smart inverters have the capability of real time remote control through digital communication interfaces. However, cyberattack has become a major threat with the deployment of Information and Communications Technology (ICT) in a smart grid. The past cyberattack incidents have demonstrated how attackers can sabotage a power grid through digital communication systems. In the worst case, numerous electricity consumers can experience a major and extended power outage. Unfortunately, tracking techniques are not efficient for today’s advanced communication networks. Therefore, a reliable cyber protection system is a necessary defense tool for the power grid. In this paper, a signature-based Intrusion Detection System (IDS) is developed to detect cyber intrusions of a distribution system with a high level penetration of solar energy. To identify cyberattack events, an attack table is constructed based on the Temporal Failure Propagation Graph (TFPG) technique. It includes the information of potential cyberattack patterns in terms of attack types and time sequence of anomaly events. Once the detected anomaly events are matched with any of the predefined attack patterns, it is judged to be a cyberattack. Since the attack patterns are distinguishable from other system failures, it reduces the false positive rate. To study the impact of cyberattacks on solar devices and validate the performance of the proposed IDS, a realistic Cyber-Physical System (CPS) simulation environment available at Virginia Tech (VT) is used to develop an interconnection between the cyber and power system models. The CPS model demonstrates how communication system anomalies can impact the physical system. The results of two example cyberattack test cases are obtained with the IEEE 13 node test feeder system and the power system simulator, DIgSILENT PowerFactory. 
    more » « less
  3. This paper proposes an on-line remedial action scheme (OLRAS) in order to mitigate the voltage violations caused by false data injection attacks (FDIAs) targeting under load tap changing (ULTC) transformers in smart distribution systems. The FDIA framework contains two different phases. In the attack phase, distribution system operator (DSO), being in attacker's shoe, considers cyberattack scenarios through compromising the results of volt-var optimization problem in a radial distribution grid modified with distributed energy resources (DERs) such as photovoltaic (PV) units and wind turbines (WTs). The outcome of the attack phase will be the compromised voltage profile of the distribution grid showing different rates of voltage violations. In the reaction phase, the DSO rapidly identifies a customized distribution feeder reconfiguration (CDFR) in order to update the flows of active and reactive power throughout the targeted distribution system and recover the voltage profile. The objective functions of the proposed CDFR are defined to minimize the impacts of such cyberattacks targeting ULTCs within distribution grids. This will empower DSOs to react to severe cyberattacks, bypassing the detection stage, and address the voltage violations in a timely manner. The effectiveness of the proposed OLRAS is validated on an IEEE test system. 
    more » « less
  4. The smart grid provides efficient and cost-effective management of the electric energy grid by allowing real-time monitoring, coordinating, and controlling the system using communication networks between physical components. This inherent complexity significantly increases the vulnerabilities and attack surface in the smart grid due to misconfigurations or the lack of security hardening. Therefore, it is important to ensure a secure and resilient operation of the smart grid by proactive identification of potential threats, impact assessment, and cost-efficient mitigation planning. This paper aims to achieve these goals through the development of an efficient security framework for the Energy Management System (EMS), a core smart grid component. In this paper, we present a framework that combines formal analytic with PowerWorld simulator which verifies the solution model to investigate the feasibility of false data injection attacks against contingency analysis in the power grid. We evaluate the impact of such attacks by running experiments using synthetic data on the standard IEEE test cases. 
    more » « less
  5. The growing integration of distributed energy resources (DERs) in distribution grids raises various reliability issues due to DER's uncertain and complex behaviors. With large-scale DER penetration in distribution grids, traditional outage detection methods, which rely on customers report and smart meters' “last gasp” signals, will have poor performance, because renewable generators and storage and the mesh structure in urban distribution grids can continue supplying power after line outages. To address these challenges, we propose a data-driven outage monitoring approach based on the stochastic time series analysis with a theoretical guarantee. Specifically, we prove via power flow analysis that dependency of time-series voltage measurements exhibits significant statistical changes after line outages. This makes the theory on optimal change-point detection suitable to identify line outages. However, existing change point detection methods require post-outage voltage distribution, which are unknown in distribution systems. Therefore, we design a maximum likelihood estimator to directly learn distribution pa-rameters from voltage data. We prove the estimated parameters-based detection also achieves optimal performance, making it extremely useful for fast distribution grid outage identifications. Furthermore, since smart meters have been widely installed in distribution grids and advanced infrastructure (e.g., PMU) has not widely been available, our approach only requires voltage magnitude for quick outage identification. Simulation results show highly accurate outage identification in eight distribution grids with 17 configurations with and without DERs using smart meter data. 
    more » « less