skip to main content


Title: The Impact of Integrating a Flipped Lecture in a Biotransport Laboratory Course on Student Learning and Engagement
Introduction: Inquiry-based learning is vital to the engineering design process, and most crucially in the laboratory and hands-on settings. Through the model of inquiry-based design, student teams are able to formulate critical inputs to the design process and develop a stronger and more relevant understanding of theoretical principles and their applications. In the junior-level Biotransport laboratory course at Purdue University’s Weldon School of BME, the curriculum utilizes the engineering design process to guide students through three (3) different modules covering different Biotransport phenomena (diffusivity, mass transport, and heat transfer). Students are required to research, conceptualize, and generate hypotheses around a module prompt. Students design, execute, and analyze their own experimental setups to test the hypotheses within an autodidactic peer-learning structure. Methods: A multi-year study was completed spanning from 2014 to 2016, assessing students’ end of course evaluations. With an integration of the flipped lecture into the lab being first implemented in 2015 (prior to 2015, the flipped lecture was a stand-alone course offered outside of the lab sections), the data presented here offers a comparison of student evaluations between these two course structures. Per the student response rates, the sample size for each year was: n=81 (2016); n=60 (2015); n=48 (2014). The surveys were anonymous and a host of questions related to overall course satisfaction, structure, and content were posed. Results: Analysis of the data showed a consistent increase in overall student satisfaction with the course following the implementation of the new structure. The percent of students giving a satisfactory rating or higher for the 2014, 2015 and 2016 course offerings was 79%, 89%, 92%, respectively. This shows a significant difference between 2014 and 2016. Conclusion: The integration of a flipped lecture into the lab successfully improved student satisfaction and self-perceived understanding of course material. This format also improved the delivery of content to students as assessed by maintaining pertinence to the lab topics and clear understanding of learning concepts.  more » « less
Award ID(s):
1752366
NSF-PAR ID:
10171335
Author(s) / Creator(s):
Date Published:
Journal Name:
2018 ASEE Annual Conference & Exposition
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Community colleges provide an important pathway for many prospective engineering graduates, especially those from traditionally underrepresented groups. However, due to a lack of facilities, resources, student demand and/or local faculty expertise, the breadth and frequency of engineering course offerings is severely restricted at many community colleges. This in turn presents challenges for students trying to maximize their transfer eligibility and preparedness. Through a grant from the National Science Foundation Improving Undergraduate STEM Education program (NSF IUSE), three community colleges from Northern California collaborated to increase the availability and accessibility of a comprehensive lower-division engineering curriculum, even at small-to-medium sized community colleges. This was accomplished by developing resources and teaching strategies that could be employed in a variety of delivery formats (e.g., fully online, online/hybrid, flipped face-to-face, etc.), providing flexibility for local community colleges to leverage according to their individual needs. This paper focuses on the iterative development, testing, and refining of the resources for an introductory Materials Science course with 3-unit lecture and 1-unit laboratory components. This course is required as part of recently adopted statewide model associate degree curricula for transfer into Civil, Mechanical, Aerospace, and Manufacturing engineering bachelor’s degree programs at California State Universities. However, offering such a course is particularly challenging for many community colleges, because of a lack of adequate expertise and/or laboratory facilities and equipment. Consequently, course resources were developed to help mitigate these challenges by streamlining preparation for instructors new to teaching the course, as well as minimizing the face-to-face use of traditional materials testing equipment in the laboratory portion of the course. These same resources can be used to support online hybrid and other alternative (e.g., emporium) delivery approaches. After initial pilot implementation of the course during the Spring 2015 semester by the curriculum designer in a flipped student-centered format, these same resources were then implemented by an instructor who had never previously taught the course, at a different community college that did not have its own materials laboratory facilities. A single site visit was arranged with a nearby community college to afford students an opportunity to complete certain lab activities using traditional materials testing equipment. Lessons learned during this attempt were used to inform curriculum revisions, which were evaluated in a repeat offering the following year. In all implementations of the course, student surveys and interviews were used to determine students’ perceptions of the effectiveness of the course resources, student use of these resources, and overall satisfaction with the course. Additionally, student performance on objective assessments was compared with that of traditional lecture delivery of the course by the curriculum designer in prior years. During initial implementations of the course, results from these surveys and assessments revealed low levels of student satisfaction with certain aspects of the flipped approach and course resources, as well as reduced learning among students at the alternate institution. Subsequent modifications to the curriculum and delivery approach were successful in addressing most of these deficiencies. 
    more » « less
  2. A substantial percentage of engineering graduates, especially those from traditionally underrepresented groups, complete their lower-division education at a community college before transferring to a university to earn their degree. However, engineering programs at many community colleges, because of their relatively small scale with often only one permanent faculty member, struggle to offer lower-division engineering courses with the breadth and frequency needed by students for effective and efficient transfer preparation. As a result, engineering education becomes impractical and at times inaccessible for many community college students. Through a grant from the National Science Foundation Improving Undergraduate STEM Education program (NSF IUSE), three community colleges from Northern California collaborated to increase the availability and accessibility of the engineering curriculum by developing resources and teaching strategies to enable small-to-medium sized community college engineering programs to support a comprehensive set of lower-division engineering courses. These resources were developed for use in a variety of delivery formats (e.g., fully online, online/hybrid, flipped face-to-face, etc.), providing flexibility for local community colleges to leverage according to their individual needs. This paper focuses on the development and testing of the resources for an introductory Materials Science course with 3-unit lecture and 1-unit laboratory components. Although most of the course resources were developed to allow online delivery if desired, the laboratory curriculum was designed to require some limited face-to-face interaction with traditional materials testing equipment. In addition to the resources themselves, the paper presents the results of the pilot implementation of the course during the Spring 2015 semester, taught using a flipped delivery format consisting of asynchronous remote viewing of lecture videos and face-to-face student-centered problem-solving and lab exercises. These same resources were then implemented in a flipped format by an instructor who had never previously taught the course, at a community college that did not have its own materials laboratory facilities. Site visits were arranged with a nearby community college to afford students an opportunity to complete certain lab activities using traditional materials testing equipment. In both implementations of the course, student surveys and interviews were used to determine students’ perceptions of the effectiveness of the course resources, student use of these resources, and overall satisfaction with the course. Additionally, student performance on assessments was compared with that of traditional lecture delivery of the courses in prior years. 
    more » « less
  3. Evidence has shown that facilitating student-centered learning (SCL) in STEM classrooms enhances student learning and satisfaction [1]–[3]. However, despite increased support from educational and government bodies to incorporate SCL practices [1], minimal changes have been made in undergraduate STEM curriculum [4]. Faculty often teach as they were taught, relying heavily on traditional lecture-based teaching to disseminate knowledge [4]. Though some faculty express the desire to improve their teaching strategies, they feel limited by a lack of time, training, and incentives [4], [5]. To maximize student learning while minimizing instructor effort to change content, courses can be designed to incorporate simpler, less time-consuming SCL strategies that still have a positive impact on student experience. In this paper, we present one example of utilizing a variety of simple SCL strategies throughout the design and implementation of a 4-week long module. This module focused on introductory tissue engineering concepts and was designed to help students learn foundational knowledge within the field as well as develop critical technical skills. Further, the module sought to develop important professional skills such as problem-solving, teamwork, and communication. During module design and implementation, evidence-based SCL teaching strategies were applied to ensure students developed important knowledge and skills within the short timeframe. Lectures featured discussion-based active learning exercises to encourage student engagement and peer collaboration [6]–[8]. The module was designed using a situated perspective, acknowledging that knowing is inseparable from doing [9], and therefore each week, the material taught in the two lecture sessions was directly applied to that week’s lab to reinforce students’ conceptual knowledge through hands-on activities and experimental outcomes. Additionally, the majority of assignments served as formative assessments to motivate student performance while providing instructors with feedback to identify misconceptions and make real-time module improvements [10]–[12]. Students anonymously responded to pre- and post-module surveys, which focused on topics such as student motivation for enrolling in the module, module expectations, and prior experience. Students were also surveyed for student satisfaction, learning gains, and graduate student teaching team (GSTT) performance. Data suggests a high level of student satisfaction, as most students’ expectations were met, and often exceeded. Students reported developing a deeper understanding of the field of tissue engineering and learning many of the targeted basic lab skills. In addition to hands-on skills, students gained confidence to participate in research and an appreciation for interacting with and learning from peers. Finally, responses with respect to GSTT performance indicated a perceived emphasis on a learner-centered and knowledge/community-centered approaches over assessment-centeredness [13]. Overall, student feedback indicated that SCL teaching strategies can enhance student learning outcomes and experience, even over the short timeframe of this module. Student recommendations for module improvement focused primarily on modifying the lecture content and laboratory component of the module, and not on changing the teaching strategies employed. The success of this module exemplifies how instructors can implement similar strategies to increase student engagement and encourage in-depth discussions without drastically increasing instructor effort to re-format course content. Introduction. 
    more » « less
  4. Motivation: This is a complete paper. There was a sudden shift from traditional learning to online learning in Spring 2020 with the outbreak of COVID-19. Although online learning is not a new topic of discussion, universities, faculty, and students were not prepared for this sudden change in learning. According to a recent article in ‘The Chronicle of Higher Education, “even under the best of circumstances, virtual learning requires a different, carefully crafted approach to engagement”. The Design Thinking course under study is a required freshmen level course offered in a Mid-western University. The Design Thinking course is offered in a flipped format where all the content to be learned is given to students beforehand and the in-class session is used for active discussions and hands-on learning related to the content provided at the small group level. The final learning objective of the course is a group project where student groups are expected to come up with functional prototypes to solve a real-world problem following the Design Thinking process. There were eighteen sections of the Design Thinking course offered in Spring 2020, and with the outbreak of COVID-19, a few instructors decided to offer synchronous online classes (where instructors were present online during class time and provided orientation and guidance just like a normal class) and a few others decided to offer asynchronous online classes (where orientation from the instructor was delivered asynchronous and the instructor was online during officially scheduled class time but interactions were more like office hours). Students were required to be present synchronously at the team level during the class time in a synchronous online class. In an asynchronous online class, students could be synchronous at the team level to complete their assignment any time prior to the deadline such that they could work during class time but they were not required to work at that time. Through this complete paper, we are trying to understand student learning, social presence and learner satisfaction with respect to different modes of instruction in a freshmen level Design Thinking course. Background: According to literature, synchronous online learning has advantages such as interaction, a classroom environment, and better course quality whereas asynchronous online learning has advantages such as self-controlled and self-directed learning. The disadvantages of synchronous online learning include the learning process, technology issues, and distraction. Social isolation, lack of interaction, and technology issue are a few disadvantages related to asynchronous online learning. Problem Being Addressed: There is a limited literature base investigating different modes of online instruction in a Design Thinking course. Through this paper, we are trying to understand and share the effectiveness of synchronous and asynchronous modes of instruction in an online Flipped Design Thinking Course. The results of the paper could also help in this time of pandemic by shedding light on the more effective way to teach highly active group-based classrooms for better student learning, social presence, and learner satisfaction. Method/Assessment: An end of semester survey was monitored in Spring 2020 to understand student experiences in synchronous and asynchronous Design Thinking course sections. The survey was sent to 720 students enrolled in the course in Spring 2020 and 324 students responded to the survey. Learning was measured using the survey instrument developed by Walker (2003) and the social presence and learner satisfaction was measured by the survey modified by Richardson and Swan (2003). Likert scale was used to measure survey responses. Anticipated Results: Data would be analyzed and the paper would be completed by draft paper submission. As the course under study is a flipped and active course with a significant component of group work, the anticipated results after analysis could be that one mode of instruction has higher student learning, social presence, and learner satisfaction compared to the other. 
    more » « less
  5. There is an increasing recognition among institutions of higher education of the important role that community colleges play in educating future engineers and scientists, especially students from traditionally underrepresented groups. Two-plus-two programs and articulation agreements between community colleges and four-year institutions are growing, allowing community college students to take their lower-division courses at local community colleges and then transfer to a university to complete their baccalaureate degrees. For many small community colleges, however, developing a comprehensive transfer engineering program that prepares students to be competitive for transfer can be challenging due to a lack of facilities, resources, and local expertise. As a result, many community college students transfer without completing the necessary courses for transfer, making timely completion of degrees difficult. Through a grant from the National Science Foundation Improving Undergraduate STEM Education program (NSF IUSE), three community colleges from Northern California collaborated to develop resources and alternative teaching strategies to enable small-to-medium community college engineering programs to support a comprehensive set of lower-division engineering courses that are delivered either completely online, or with limited face-to-face interactions. The biggest challenge in developing such strategies lies in designing and implementing courses that have lab components. This paper focuses on the development and testing of the teaching and learning resources for Engineering Graphics, which is a four-unit course (three units of lecture and one unit of lab) covering the principles of engineering drawings, computer-aided design (using both AutoCAD and SolidWorks), and the engineering design process. The paper also presents the results of the implementation of the curriculum, as well as a comparison of the outcomes of the online course with those from a regular, face-to-face course. Student performance on labs and tests in the two parallel sections of the course are compared. Additionally student surveys and interviews, conducted in both the online and face-to-face course are used to document and compare students’ perceptions of their learning experience, the effectiveness of the course resources, their use of these resources, and their overall satisfaction with the course. 
    more » « less