This paper investigates the problem of persistent monitoring, where a finite set of mobile agents persistently visits a finite set of targets in a multi-dimensional environment. The agents must estimate the targets’ internal states and the goal is to minimize the mean squared estimation error over time. The internal states of the targets evolve with linear stochastic dynamics and thus the optimal estimator is a Kalman-Bucy Filter. We constrain the trajectories of the agents to be periodic and represented by a truncated Fourier series. Taking advantage of the periodic nature of this solution, we define the infinite horizon version of the problem and explore the property that the mean estimation squared error converges to a limit cycle. We present a technique to compute online the gradient of the steady state mean estimation error of the targets’ states with respect to the parameters defining the trajectories and use a gradient descent scheme to obtain locally optimal movement schedules. This scheme allows us to address the infinite horizon problem with only a small number of parameters to be optimized.
more »
« less
Periodic multi-agent persistent monitoring of a finite set of targets with uncertain states
We investigate the problem of persistently monitoring a finite set of targets with internal states that evolve with linear stochastic dynamics using a finite set of mobile agents. We approach the problem from the infinite-horizon perspective, looking for periodic movement schedules for the agents. Under linear dynamics and some standard assumptions on the noise distribution, the optimal estimator is a Kalman- Bucy filter. It is shown that when the agents are constrained to move only over a line and they can see at most one target at a time, the optimal movement policy is such that the agent is always either moving with maximum speed or dwelling at a fixed position. Periodic trajectories of this form admit finite parameterization, and we show to compute a stochastic gradient estimate of the performance with respect to the parameters that define the trajectory using Infinitesimal Perturbation Analysis. A gradient-descent scheme is used to compute locally optimal parameters. This approach allows us to deal with a very long persistent monitoring horizon using a small number of parameters.
more »
« less
- PAR ID:
- 10171439
- Date Published:
- Journal Name:
- 2020 American Control Conference
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Consider a general-sum N-player linear-quadratic (LQ) game with stochastic dynamics over a finite time horizon. It is known that under some mild assumptions, the Nash equilibrium (NE) strategies for the players can be obtained by a natural policy gradient algorithm. However, the traditional implementation of the algorithm requires the availability of complete state and action information from all agents and may not scale well with the number of agents. Under the assumption of known problem parameters, we present an algorithm that assumes state and action information from only neighboring agents according to the graph describing the dynamic or cost coupling among the agents. We show that the proposed algorithm converges to an 𝜖-neighborhood of the NE where the value of 𝜖 depends on the size of the local neighborhood of agents.more » « less
-
This article investigates a stochastic optimal control problem with linear Gaussian dynamics, quadratic performance measure, but non-Gaussian observations. The linear Gaussian dynamics characterizes a large number of interacting agents evolving under a centralized control and external disturbances. The aggregate state of the agents is only partially known to the centralized controller by means of the samples taken randomly in time and from anonymous randomly selected agents. Due to removal of the agent identity from the samples, the observation set has a non-Gaussian structure, and as a consequence, the optimal control law that minimizes a quadratic cost is essentially nonlinear and infinite-dimensional, for any finite number of agents. For infinitely many agents, however, this paper shows that the optimal control law is the solution to a reduced order, finite-dimensional linear quadratic Gaussian problem with Gaussian observations sampled only in time. For this problem, the separation principle holds and is used to develop an explicit optimal control law by combining a linear quadratic regulator with a separately designed finite-dimensional minimum mean square error state estimator. Conditions are presented under which this simple optimal control law can be adopted as a suboptimal control law for finitely many agents.more » « less
-
In this paper, we address a finite-horizon stochastic optimal control problem with covariance assignment and input energy constraints for discrete-time stochastic linear systems with partial state information. In our approach, we consider separation-based control policies that correspond to sequences of control laws that are affine functions of either the complete history of the output estimation errors, that is, the differences between the actual output measurements and their corresponding estimated outputs produced by a discrete-time Kalman filter, or a truncation of the same history. This particular feedback parametrization allows us to associate the stochastic optimal control problem with a tractable semidefinite (convex) program. We argue that the proposed procedure for the reduction of the stochastic optimal control problem to a convex program has significant advantages in terms of improved scalability and tractability over the approaches proposed in the relevant literature.more » « less
-
We present a data-driven algorithm for efficiently computing stochastic control policies for general joint chance constrained optimal control problems. Our approach leverages the theory of kernel distribution embeddings, which allows representing expectation operators as inner products in a reproducing kernel Hilbert space. This framework enables approximately reformulating the original problem using a dataset of observed trajectories from the system without imposing prior assumptions on the parameterization of the system dynamics or the structure of the uncertainty. By optimizing over a finite subset of stochastic open-loop control trajectories, we relax the original problem to a linear program over the control parameters that can be efficiently solved using standard convex optimization techniques. We demonstrate our proposed approach in simulation on a system with nonlinear non-Markovian dynamics navigating in a cluttered environment.more » « less
An official website of the United States government

