skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Step Tutor: Supporting Students through Step-by-Step Example-Based Feedback
Students often get stuck when programming independently, and need help to progress. Existing, automated feedback can help students progress, but it is unclear whether it ultimately leads to learning. We present Step Tutor, which helps struggling students during programming by presenting them with relevant, step-by-step examples. The goal of Step Tutor is to help students progress, and engage them in comparison, reflection, and learning. When a student requests help, Step Tutor adaptively selects an example to demonstrate the next meaningful step in the solution. It engages the student in comparing "before" and "after" code snapshots, and their corresponding visual output, and guides them to reflect on the changes. Step Tutor is a novel form of help that combines effective aspects of existing support features, such as hints and Worked Examples, to help students both progress and learn. To understand how students use Step Tutor, we asked nine undergraduate students to complete two programming tasks, with its help, and interviewed them about their experience. We present our qualitative analysis of students' experience, which shows us why and how they seek help from Step Tutor, and Step Tutor's affordances. These initial results suggest that students perceived that Step Tutor accomplished its goals of helping them to progress and learn.  more » « less
Award ID(s):
1917885
PAR ID:
10171441
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
International Conference on Innovation and Technology in Computer Science Education
Page Range / eLocation ID:
391 to 397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract: Modeling student learning processes is highly complex since it is influenced by many factors such as motivation and learning habits. The high volume of features and tools provided by computer-based learning environments confounds the task of tracking student knowledge even further. Deep Learning models such as Long-Short Term Memory (LSTMs) and classic Markovian models such as Bayesian Knowledge Tracing (BKT) have been successfully applied for student modeling. However, much of this prior work is designed to handle sequences of events with discrete timesteps, rather than considering the continuous aspect of time. Given that time elapsed between successive elements in a student’s trajectory can vary from seconds to days, we applied a Timeaware LSTM (T-LSTM) to model the dynamics of student knowledge state in continuous time. We investigate the effectiveness of T-LSTM on two domains with very different characteristics. One involves an open-ended programming environment where students can self-pace their progress and T-LSTM is compared against LSTM, Recent Temporal Pattern Mining, and the classic Logistic Regression (LR) on the early prediction of student success; the other involves a classic tutor-driven intelligent tutoring system where the tutor scaffolds the student learning step by step and T-LSTM is compared with LSTM, LR, and BKT on the early prediction of student learning gains. Our results show that TLSTM significantly outperforms the other methods on the self-paced, open-ended programming environment; while on the tutor-driven ITS, it ties with LSTM and outperforms both LR and BKT. In other words, while time-irregularity exists in both datasets, T-LSTM works significantly better than other student models when the pace is driven by students. On the other hand, when such irregularity results from the tutor, T-LSTM was not superior to other models but its performance was not hurt either. 
    more » « less
  2. Open-ended programming engages students by connecting computing with their real-world experience and personal interest. However, such open-ended programming tasks can be challenging, as they require students to implement features that they may be unfamiliar with. Code examples help students to generate ideas and implement program features, but students also encounter many learning barriers when using them. We explore how to design code examples to support novices' effective example use by presenting our experience of building and deploying Example Helper, a system that supports students with a gallery of code examples during open-ended programming. We deployed Example Helper in an undergraduate CS0 classroom to investigate students' example usage experience, finding that students used different strategies to browse, understand, experiment with, and integrate code examples and that students who make more sophisticated plans also used more examples in their projects. 
    more » « less
  3. null (Ed.)
    As CS enrollments continue to grow, introductory courses are employing more undergraduate TAs. One of their main roles is performing one-on-one tutoring in the computer lab to help students understand and debug their programming assignments. What goes on in the mind of an undergraduate TA when they are helping students with programming? In this experience report, we present firsthand accounts from an undergraduate TA documenting her 36 hours of in-lab tutoring for a CS2 course, where she engaged in 69 one-on-one help sessions. This report provides a unique perspective from an undergraduate's point-of-view rather than a faculty member's. We summarize her experiences by constructing a four-part model of tutoring interactions: a) The tutor begins the session with an initial state of mind (e.g., their energy/focus level, perceived time pressure). b) They observe the student's outward state upon arrival (e.g., how much they seem to care about learning). c) Using that observation, the tutor infers what might be going on inside the student's mind. d) The combination of what goes on inside the tutor's and student's minds affects tutoring interactions, which progress from diagnosis to planning to an explain-code-react loop to post-resolution activities. We conclude by discussing ways that this model can be used to design scaffolding for training novice TAs and software tools to help TAs scale their efforts to larger classes. 
    more » « less
  4. In this paper we describe the historical background of the introductory course in Electric Circuits I, how it has been taught, and the different modifications this course has undergone for the past few years. We describe preliminary results of a new step-based method on student learning which has been applied at the University of Texas at El Paso (UTEP) to improve students’ understanding of the topics covered in this course, and describe the step-based tutoring System, dubbed Circuit Tutor, developed by researchers at the UTEP. The results indicate Circuit Tutor platform can be used as a self-learning tool according to survey answers from students and the increasing passing rate in the Circuits I course. 
    more » « less
  5. In this paper we describe the historical background of the introductory course in Electric Circuits I, how it has been taught, and the different modifications this course has undergone for the past few years. We describe preliminary results of a new step-based method on student learning which has been applied at the University of Texas at El Paso (UTEP) to improve students’ understanding of the topics covered in this course, and describe the step-based tutoring System, dubbed Circuit Tutor, developed by researchers at the UTEP. The results indicate Circuit Tutor platform can be used as a self-learning tool according to survey answers from students and the increasing passing rate in the Circuits I course. 
    more » « less