Bayesian Knowledge Tracing (BKT) is a commonly used approach for student modeling, and Long Short Term Memory (LSTM) is a versatile model that can be applied to a wide range of tasks, such as language translation. In this work, we directly compared three models: BKT, its variant Intervention-BKT (IBKT), and LSTM, on two types of student modeling tasks: post-test scores prediction and learning gains prediction. Additionally, while previous work on student learning has often used skill/knowledge components identified by domain experts, we incorporated an automatic skill discovery method (SK), which includes a nonparametric prior over the exercise-skill assignments, to all three models. Thus, we explored a total of six models: BKT, BKT+SK, IBKT, IBKT+SK, LSTM, and LSTM+SK. Two training datasets were employed, one was collected from a natural language physics intelligent tutoring system named Cordillera, and the other was from a standard probability intelligent tutoring system named Pyrenees. Overall, our results showed that BKT and BKT+SK outperformed the others on predicting post-test scores, whereas LSTM and LSTM+SK achieved the highest accuracy, F1-measure, and area under the ROC curve (AUC) on predicting learning gains. Furthermore, we demonstrated that by combining SK with the BKT model, BKT+SK could reliably predict post-test scores using only the earliest 50% of the entire training sequences. For learning gain early prediction, using the earliest 70% of the entire sequences, LSTM can deliver a comparable prediction as using the entire training sequences. The findings yield a learning environment that can foretell students’ performance and learning gains early, and can render adaptive pedagogical strategy accordingly. 
                        more » 
                        « less   
                    
                            
                            What Time is It? Student Modeling Needs to Know.
                        
                    
    
            Abstract: Modeling student learning processes is highly complex since it is influenced by many factors such as motivation and learning habits. The high volume of features and tools provided by computer-based learning environments confounds the task of tracking student knowledge even further. Deep Learning models such as Long-Short Term Memory (LSTMs) and classic Markovian models such as Bayesian Knowledge Tracing (BKT) have been successfully applied for student modeling. However, much of this prior work is designed to handle sequences of events with discrete timesteps, rather than considering the continuous aspect of time. Given that time elapsed between successive elements in a student’s trajectory can vary from seconds to days, we applied a Timeaware LSTM (T-LSTM) to model the dynamics of student knowledge state in continuous time. We investigate the effectiveness of T-LSTM on two domains with very different characteristics. One involves an open-ended programming environment where students can self-pace their progress and T-LSTM is compared against LSTM, Recent Temporal Pattern Mining, and the classic Logistic Regression (LR) on the early prediction of student success; the other involves a classic tutor-driven intelligent tutoring system where the tutor scaffolds the student learning step by step and T-LSTM is compared with LSTM, LR, and BKT on the early prediction of student learning gains. Our results show that TLSTM significantly outperforms the other methods on the self-paced, open-ended programming environment; while on the tutor-driven ITS, it ties with LSTM and outperforms both LR and BKT. In other words, while time-irregularity exists in both datasets, T-LSTM works significantly better than other student models when the pace is driven by students. On the other hand, when such irregularity results from the tutor, T-LSTM was not superior to other models but its performance was not hurt either. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1651909
- PAR ID:
- 10214148
- Date Published:
- Journal Name:
- In Proceedings of the 13th International Conference on Educational Data Mining (EDM) 2020
- Page Range / eLocation ID:
- pp 171-182
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)We conducted a study to see if using Bayesian Knowledge Tracing (BKT) models would save time and problems in programming tutors. We used legacy data collected by two programming tutors to compute BKT models for every concept covered by each tutor. The novelty of our model was that slip and guess parameters were computed for every problem presented by each tutor. Next, we used cross-validation to evaluate whether the resulting BKT model would have reduced the number of practice problems solved and time spent by the students represented in the legacy data. We found that in 64.23% of the concepts, students would have saved time with the BKT model. The savings varied among concepts. Overall, students would have saved a mean of 1.28 minutes and 1.23 problems per concept. We also found that BKT models were more effective at saving time and problems on harder concepts.more » « less
- 
            Early prediction of student difficulty during long-duration learning activities allows a tutoring system to intervene by providing needed support, such as a hint, or by alerting an instructor. To be eeffective, these predictions must come early and be highly accurate, but such predictions are difficult for open-ended programming problems. In this work, Recent Temporal Patterns (RTPs) are used in conjunction with Support Vector Machine and Logistic Regression to build robust yet interpretable models for early predictions. We performed two tasks: to predict student success and difficulty during one, open-ended novice programming task of drawing a square-shaped spiral. We compared RTP against several machine learning models ranging from the classic to the more recent deep learning models such as Long Short Term Memory to predict whether students would be able to complete the programming task. Our results show that RTP-based models outperformed all others, and could successfully classify students after just one minute of a 20- minute exercise (students can spend more than 1 hour on it). To determine when a system might intervene to prevent incompleteness or eventual dropout, we applied RTP at regular intervals to predict whether a student would make progress within the next fi ve minutes, reflecting that they may be having difficulty. RTP successfully classifi ed these students needing interventions over 85% of the time, with increased accuracy using data-driven program features. These results contribute signi ficantly to the potential to build a fully data-driven tutoring system for novice programming.more » « less
- 
            null (Ed.)Recent student knowledge modeling algorithms such as Deep Knowledge Tracing (DKT) and Dynamic Key-Value Memory Networks (DKVMN) have been shown to produce accurate predictions of problem correctness within the same learning system. However, these algorithms do not attempt to directly infer student knowledge. In this paper we present an extension to these algorithms to also infer knowledge. We apply this extension to DKT and DKVMN, resulting in knowledge estimates that correlate better with a posttest than knowledge estimates from Bayesian Knowledge Tracing (BKT), an algorithm designed to infer knowledge, and another classic algorithm, Performance Factors Analysis (PFA). We also apply our extension to correctness predictions from BKT and PFA, finding that knowledge estimates produced with it correlate better with the posttest than BKT and PFA’s standard knowledge estimates. These findings are significant since the primary aim of education is to prepare students for later experiences outside of the immediate learning activity.more » « less
- 
            Modeling patient disease progression using Electronic Health Records (EHRs) is critical to assist clinical decision making. Long-Short Term Memory (LSTM) is an effective model to handle sequential data, such as EHRs, but it encounters two major limitations when applied to EHRs: it is unable to interpret the prediction results and it ignores the irregular time intervals between consecutive events. To tackle these limitations, we propose an attention-based time-aware LSTM Networks (ATTAIN), to improve the interpretability of LSTM and to identify the critical previous events for current diagnosis by modeling the inherent time irregularity. We validate ATTAIN on modeling the progression of an extremely challenging disease, septic shock, by using real-world EHRs. Our results demonstrate that the proposed framework outperforms the state-of-the-art models such as RETAIN and T-LSTM. Also, the generated interpretative time-aware attention weights shed some lights on the progression behaviors of septic shock.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    