skip to main content


Title: Design and Pilot Testing of Subgoal Labeled Worked Examples for Five Core Concepts in CS1
Subgoal learning has improved student problem-solving performance in programming, but it has been tested for only one-to-two hours of instruction at a time. Our work pioneers implementing subgoal learning throughout an entire introductory programming course. In this paper we discuss the protocol that we used to identify subgoals for core programming procedures, present the subgoal labels created for the course, and outline the subgoal-labeled instructional materials that were designed for a Java-based course. To examine the effect of subgoal labeled materials on student performance in the course, we compared quiz and exam grades between students who learned using subgoal labels and those who learned using conventional materials. Initial results indicate that learning with subgoals improves performance on early applications of concepts. Moreover, variance in performance was lower and persistence in the course was higher for students who learned with subgoals compared to those who learned with conventional materials, suggesting that learning with subgoal labels may uniquely benefit students who would normally receive low grades or dropout of the course.  more » « less
Award ID(s):
1712231 1927906
NSF-PAR ID:
10171487
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the 2019 ACM Conference on Innovation and Technology in Computer Science Education
Page Range / eLocation ID:
548 to 554
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Subgoal labels are function-based instructional explanations that describe the problem-solving steps to the learner, highlighting the solution process. There is strong evidence that the use of subgoal labels within worked examples improves student learning in other STEM fields. Initial research shows that using subgoal labels within computer science improves student learning, but this has only been tested using a single programming concept (indefinite loops) with text-based programming languages. The proposers are currently expanding subgoal labels to the main programming concepts taught in an introductory programming course using an imperative programming language. In this BOF we seek to uncover tacit knowledge that programming instructors have in order to develop instructional materials that bridge the gap between students, who are CS novices, and instructors, who are CS experts, to improve learning for students who are under-prepared for or struggle in CS1. We will be seeking feedback on the selection of programming topics to be covered, the defined subgoals for those topics and the worked examples created for instructional purposes. 
    more » « less
  2. This work extends previous research on subgoal labeled instructions by examining their effect across a semester-long, Java-based CS1 course. Across four quizzes, students were asked to explain in plain English the process that they would use to solve a programming problem. In this mixed methods study, we used the SOLO taxonomy to categorize student responses about problem-solving processes and compare students who learned with subgoal labels to those who did not. The use of the SOLO taxonomy classification allows us to look deeper than the mere correctness of answers to focus on the quality of the answers produced in terms of completeness of relevant concepts and explanation of relationships among concepts. Students who learned with subgoals produced higher-rated answers in terms of complexity and quality on three of four quizzes. Also, they were three times more likely to discuss issues of data type on a question about assignments and expressions than students who did not learn with subgoal labeling. This suggests that the use of subgoal labeling enabled students to gain a deeper and more complex understanding of the material presented in the course. 
    more » « less
  3. null (Ed.)
    The subgoal learning framework has improved performance for novice programmers in higher education, but it has only started to be applied and studied in K-12 (primary/secondary). Programming education in K-12 is growing, and many international initiatives are attempting to increase participation, including curricular initiatives like Computer Science Principles and non-profit organizations like Code.org. Given that subgoal learning is designed to help students with no prior knowledge, we designed and implemented subgoals in the introduction to programming unit in Code.org's Computer Science Principles course. The redesigned unit includes subgoal-oriented instruction and subgoal-themed pre-written comments that students could add to their programming activities. To evaluate efficacy, we compared behaviors and performance of students who received the redesigned subgoal unit to those receiving the original unit. We found that students who learned with subgoals performed better on problem-solving questions but not knowledge-based questions and wrote more in open-ended response questions, including a practice Performance Task for the AP exam. Moreover, at least one-third of subgoal students continued to use the subgoal comments after the subgoal-oriented instruction had been faded, suggesting that they found them useful. Survey data from the teachers suggested that students who struggled with the concepts found the subgoals most useful. Implications for future designs are discussed. 
    more » « less
  4. Subgoal labeling is an instructional design framework for breaking down problems into pieces that are small enough for novices to grasp, and often difficult for instructors (i.e., experts) to articulate. Subgoal labels have been shown to improve student performance during problem solving in many disciplines, including computing. Improved student performance occurs because subgoal labels improve student transfer and retention of knowledge. With support from NSF (DUE-1712025, 1712231, 1927906, 2110156, 2111578), subgoal labels have been previously identified and integrated into a CS1 course (variables, expressions, conditionals, loops, arrays, classes) and an e-book has been created on the Runestone platform to enable students to complete practice problems using the subgoals. The initial implementation focused on Java, but within the past year, the development of subgoals for CS1 courses in Python have been created. Subsequently, course materials have been created as well. This workshop will introduce participants to the new materials (in Python) and demonstrate how the subgoal labels and worked examples are integrated throughout the course. Materials include worked examples and practice problems that increase in complexity and difficulty within each topic. The materials are designed to be integrated into CS1 courses as homework or classroom examples and activities. Assessment of topics using subgoal labels will also be discussed. Participants will also engage in an activity where they create an example for their own course using subgoal labels. 
    more » « less
  5. There have been many calls recently for computing for all across the nation. While there are many opportunities to study and use computing to advance the fields of computer science, software development, and information technology, computing is also needed in a wide range of other disciplines, including engineering. Most engineering programs require students take a course that teaches them introductory programming, which covers many of the same topics as an introductory course for computing majors (and at times may be the same course). However, statistics about the success of a course that is an introductory programming course are sobering; approximately half the students will fail, forcing them to either repeat the course or leave their chosen field of study if passing the course is required. This NSF IUSE project incorporates instructional techniques identified through educational psychology research as effective ways to improve student learning and retention in introductory programming. The research team has developed worked examples of problems that incorporate subgoal labels, which are explanations that describe the function of steps in the problem solution to the learner and highlight the problem-solving process. Using subgoal labels within worked examples, which has been effective in other STEM fields, students are able to see an expert's problem solving process, which helps students learn to solving problems before they can solve problem themselves. Experts, including instructors, teaching introductory level courses are often unable to explain the process they use in problem solving at a level that learners can grasp because they have automated much of the problem-solving processes after many years of practice. This submission will present the results of the first part of development of subgoals and will explain how to integrate them into classroom lessons in introductory computing classes. 
    more » « less