skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: LLAMA: The M BH – σ ⋆ relation of the most luminous local AGNs
Context. The M BH – σ ⋆ relation is considered a result of coevolution between the host galaxies and their supermassive black holes. For elliptical bulge hosting inactive galaxies, this relation is well established, but there is still discussion concerning whether active galaxies follow the same relation. Aims. In this paper, we estimate black hole masses for a sample of 19 local luminous active galactic nuclei (AGNs; LLAMA) to test their location on the M BH – σ ⋆ relation. In addition, we test how robustly we can determine the stellar velocity dispersion in the presence of an AGN continuum and AGN emission lines, and as a function of signal-to-noise ratio. Methods. Supermassive black hole masses ( M BH ) were derived from the broad-line-based relations for H α , H β , and Pa β emission line profiles for Type 1 AGNs. We compared the bulge stellar velocity dispersion ( σ ⋆ ) as determined from the Ca II triplet (CaT) with the dispersion measured from the near-infrared CO (2-0) absorption features for each AGN and find them to be consistent with each other. We applied an extinction correction to the observed broad-line fluxes and we corrected the stellar velocity dispersion by an average rotation contribution as determined from spatially resolved stellar kinematic maps. Results. The H α -based black hole masses of our sample of AGNs were estimated in the range 6.34 ≤ log M BH  ≤ 7.75 M ⊙ and the σ ⋆CaT estimates range between 73 ≤  σ ⋆CaT  ≤ 227 km s −1 . From the so-constructed M BH  −  σ ⋆ relation for our Type 1 AGNs, we estimate the black hole masses for the Type 2 AGNs and the inactive galaxies in our sample. Conclusions. We find that our sample of local luminous AGNs is consistent with the M BH – σ ⋆ relation of lower luminosity AGNs and inactive galaxies, after correcting for dust extinction and the rotational contribution to the stellar velocity dispersion.  more » « less
Award ID(s):
1909297
PAR ID:
10171523
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
634
ISSN:
0004-6361
Page Range / eLocation ID:
A114
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We study the black hole mass–host galaxy stellar mass relation,MBH–M*, of a sample ofz< 4 optically variable active galactic nuclei (AGNs) in the COSMOS field. The parent sample of 491 COSMOS AGNs were identified by optical variability from the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) program. Using publicly available catalogs and spectra, we consolidate their spectroscopic redshifts and estimate virial black hole masses using broad-line widths and luminosities. We show that variability searches with deep, high-precision photometry like the HSC-SSP can identity AGNs in low-mass galaxies up toz∼ 1. However, their black holes are more massive given their host galaxy stellar masses than predicted by the local relation for active galaxies. We report thatz∼ 0.5–4 variability-selected AGNs are meanwhile more consistent with theMBH–M*relation for local inactive early-type galaxies. This result is in agreement with most previous studies of theMBH–M*relation at similar redshifts and indicates that AGNs selected from variability are not intrinsically different from the broad-line Type 1 AGN population at similar luminosities. Our results demonstrate the need for robust black hole and stellar mass estimates for intermediate-mass black hole candidates in low-mass galaxies at similar redshifts to anchor this scaling relation. Assuming that these results do not reflect a selection bias, they appear to be consistent with self-regulated feedback models wherein the central black hole and stars in galaxies grow in tandem. 
    more » « less
  2. The origin of the tight scaling relation between the mass of supermassive black holes (SMBHs; MBH) and their host-galaxy properties remains unclear. Active galactic nuclei (AGNs) probe phases of ongoing SMBH growth and offer the only opportunity to measure MBH beyond the local Universe. However, determining an AGN's host galaxy's stellar velocity dispersion, σå, and its galaxy dynamical mass, Mdyn, is complicated by AGN contamination, aperture effects, and different host-galaxy morphologies. We select a sample of AGNs for which MBH has been independently determined to high accuracy by state-of-the-art techniques: dynamical modeling of the reverberation signal and spatially resolving the broad-line region with the Very Large Telescope Interferometer/GRAVITY. Using integral-field spectroscopic observations, we spatially map the host-galaxy stellar kinematics across the galaxy and bulge effective radii. We find that the dynamically hot component of galaxy disks correlates with MBH; however, the correlations are tightest for aperture-integrated σå measured across the bulge. Accounting for the different MBH distributions, we demonstrate—for the first time—that AGNs follow the same MBH–σ and MBH–M_bulge,dyn relations as quiescent galaxies. We confirm that the classical approach of determining the virial factor as a sample average, yielding log f = 0.65 +/- 0.18, is consistent with the average f from individual measurements. The similarity between the underlying scaling relations of AGNs and quiescent galaxies implies that the current AGN phase is too short to have altered black hole masses on a population level. These results strengthen the local calibration of f for measuring single-epoch MBH in the distant Universe. 
    more » « less
  3. Abstract While it is generally believed that supermassive black holes (SMBHs) lie in most galaxies with bulges, few SMBHs have been confirmed in bulgeless galaxies. Identifying such a population could provide important insights to the BH seed population and secular BH growth. To this end, we obtained near-infrared (NIR) spectroscopic observations of a sample of low-redshift bulgeless galaxies with mid-infrared colors suggestive of active galactic nuclei (AGNs). We find additional evidence of AGN activity (such as coronal lines and broad permitted lines) in 69% (9/13) of the sample, demonstrating that mid-infrared selection is a powerful tool to detect AGNs. More than half of the galaxies with confirmed AGN activity show fast outflows in [Oiii] in the optical and/or [Sivi] in the NIR, with the latter generally having much faster velocities that are also correlated to their spatial extent. We are also able to obtain virial BH masses for some targets and find they fall within the scatter of other late-type galaxies in theMBH–Mstellarrelation. The fact that they lack a significant bulge component indicates that secular processes, likely independent of major mergers, grew these BHs to supermassive sizes. Finally, we analyze the rotational gas kinematics and find two notable exceptions: two AGN hosts with outflows that appear to be rotating faster than expected. There is an indication that these two galaxies have stellar masses significantly lower than expected from their dark matter halo masses. This, combined with the observed AGN activity and strong gas outflows, may be evidence of the effects of AGN feedback. 
    more » « less
  4. Abstract Recent studies have revealed a strong relation between the sample-averaged black hole (BH) accretion rate (BHAR) and star formation rate (SFR) among bulge-dominated galaxies—i.e., “lockstep” BH–bulge growth—in the distant universe. This relation might be closely connected to the BH–bulge mass correlation observed in the local universe. To further understand BH–bulge coevolution, we present Atacama Large Millimeter/submillimeter Array (ALMA) CO(2–1) or CO(3–2) observations of seven star-forming bulge-dominated galaxies at z = 0.5–2.5. Using the ALMA data, we detect significant (>3 σ ) CO emission from four objects. For our sample of seven galaxies, we measure (or constrain with upper limits) their CO line fluxes and estimate their molecular gas masses ( M gas ). We also estimate their stellar masses ( M star ) and SFRs, by modeling their spectral energy distributions. Using these physical properties, we derive the gas depletion timescales ( τ dep ≡ M gas /SFR) and compare them with the bulge/BH growth timescales ( τ grow ≡ M star /SFR ∼ M BH /BHAR). Our sample generally has τ dep shorter than τ grow by a median factor of ≳4, indicating that the cold gas will be depleted before significant bulge/BH growth takes place. This result suggests that BH–bulge lockstep growth is mainly responsible for maintaining the mass relation, not creating it. We note that our sample is small and limited to z < 2.5; JWST and ALMA will be able to probe to higher redshifts in the near future. 
    more » « less
  5. Abstract The first wave of observations with JWST has revealed a striking overabundance of luminous galaxies at early times (z> 10) compared to models of galaxies calibrated to pre-JWST data. Early observations have also uncovered a large population of supermassive black holes (SMBHs) atz> 6. Because many of the high-zobjects appear extended, the contribution of active galactic nuclei (AGNs) to the total luminosity has been assumed to be negligible. In this work, we use a semi-empirical model for assigning AGNs to galaxies to show that active galaxies can boost the stellar luminosity function (LF) enough to solve the overabundance problem while simultaneously remaining consistent with the observed morphologies of high-zsources. We construct a model for the composite AGN+galaxy LF by connecting dark matter halo masses to galaxy and SMBH masses and luminosities, accounting for dispersion in the mapping between host galaxy and SMBH mass and luminosity. By calibrating the model parameters — which characterize the M-M*relation — to a compilation ofz> 10 JWST UVLF data, we show that AGN emission can account for the excess luminosity under a variety of scenarios, including one where 10% of galaxies host BHs of comparable luminosities to their stellar components. Using a sample of simulated objects and real observations, we demonstrate that such low-luminosity AGNs can be `hidden' in their host galaxies and be missed in common morphological analyses. We find that for this explanation to be viable, our model requires a population of BHs that are overmassive (M/M*~ 10-2) with respect to their host galaxies compared to the local relation and are more consistent with the observed relation atz= 4-8. We explore the implications of this model for BH seed properties and comment on observational diagnostics necessary to further investigate this explanation. 
    more » « less