skip to main content


Title: Deciphering the properties of the central engine in GRB collapsars
ABSTRACT The central engine in long gamma-ray bursts (GRBs) is thought to be a compact object produced by the core collapse of massive stars, but its exact nature (black hole or millisecond magnetar) is still debatable. Although the central engine of GRB collapsars is hidden to direct observation, its properties may be imprinted on the accompanying electromagnetic signals. We aim to decipher the generic properties of central engines that are consistent with prompt observations of long GRBs detected by the Burst Alert Telescope (BAT) on board the Neil Gehrels Swift Observatory. Adopting a generic model for the central engine, in which the engine power and activity time-scale are independent of each other, we perform Monte Carlo simulations of long GRBs produced by jets that successfully breakout from the star. Our simulations consider the dependence of the jet breakout time-scale on the engine luminosity and the effects of the detector’s flux threshold. The two-dimensional (2D) distribution of simulated detectable bursts in the gamma-ray luminosity versus gamma-ray duration plane is consistent with the observed one for a range of parameter values describing the central engine. The intrinsic 2D distribution of simulated collapsar GRBs peaks at lower gamma-ray luminosities and longer durations than the observed one, a prediction that can be tested in the future with more sensitive detectors. Black hole accretors, whose power and activity time are set by the large-scale magnetic flux through the progenitor star and stellar structure, respectively, are compatible with the properties of the central engine inferred by our model.  more » « less
Award ID(s):
1816694
NSF-PAR ID:
10171734
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
496
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
2910 to 2921
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Relativistic jets originating from protomagnetar central engines can lead to long duration gamma-ray bursts (GRBs) and are considered potential sources of ultra-high-energy cosmic rays and secondary neutrinos. We explore the propagation of such jets through a broad range of progenitors, from stars which have shed their envelopes to supergiants which have not. We use a semi-analytical spin-down model for the strongly magnetized and rapidly rotating protoneutron star (PNS) to investigate the role of central engine properties such as the surface dipole field strength, initial rotation period, and jet opening angle on the interactions and dynamical evolution of the jet-cocoon system. With this model, we determine the properties of the relativistic jet, the mildly relativistic cocoon, and the collimation shock in terms of system parameters such as the time-dependent jet luminosity, injection angle, and density profile of the stellar medium. We also analyse the criteria for a successful jet breakout, the maximum energy that can be deposited into the cocoon by the relativistic jet, and structural stability of the magnetized outflow relative to local instabilities. Lastly, we compute the high-energy neutrino emission as these magnetized outflows burrow through their progenitors. Precursor neutrinos from successful GRB jets are unlikely to be detected by IceCube, which is consistent with the results of previous works. On the other hand, we find that high-energy neutrinos may be produced for extended progenitors like blue and red supergiants, and we estimate the detectability of neutrinos with next generation detectors such as IceCube-Gen2.

     
    more » « less
  2. ABSTRACT

    We present a suite of the first 3D GRMHD collapsar simulations, which extend from the self-consistent jet launching by an accreting Kerr black hole (BH) to the breakout from the star. We identify three types of outflows, depending on the angular momentum, l, of the collapsing material and the magnetic field, B, on the BH horizon: (i) subrelativistic outflow (low l and high B), (ii) stationary accretion shock instability (SASI; high l and low B), (iii) relativistic jets (high l and high B). In the absence of jets, free-fall of the stellar envelope provides a good estimate for the BH accretion rate. Jets can substantially suppress the accretion rate, and their duration can be limited by the magnetization profile in the star. We find that progenitors with large (steep) inner density power-law indices (≳ 2), face extreme challenges as gamma-ray burst (GRB) progenitors due to excessive luminosity, global time evolution in the light curve throughout the burst and short breakout times, inconsistent with observations. Our results suggest that the wide variety of observed explosion appearances (supernova/supernova + GRB/low-luminosity GRBs) and the characteristics of the emitting relativistic outflows (luminosity and duration) can be naturally explained by the differences in the progenitor structure. Our simulations reveal several important jet features: (i) strong magnetic dissipation inside the star, resulting in weakly magnetized jets by breakout that may have significant photospheric emission and (ii) spontaneous emergence of tilted accretion disc-jet flows, even in the absence of any tilt in the progenitor.

     
    more » « less
  3. Abstract Gamma-ray bursts (GRBs), both long and short, are explosive events whose inner engine is generally expected to be a black hole or a highly magnetic neutron star (magnetar) accreting high-density matter. Recognizing the nature of GRB central engines, and in particular the formation of neutron stars (NSs), is of high astrophysical significance. A possible signature of NSs in GRBs is the presence of a plateau in the early X-ray afterglow. Here we carefully select a subset of long and short GRBs with a clear plateau, and look for an additional NS signature in their prompt emission, namely a transition between the accretion and propeller phases in analogy with accreting, magnetic compact objects in other astrophysical sources. We estimate from the prompt emission the minimum accretion luminosity below which the propeller mechanism sets in, and the NS magnetic field and spin period from the plateau. We demonstrate that these three quantities obey the same universal relation in GRBs as in other accreting compact objects switching from accretion to propeller. This relation provides also an estimate of the radiative efficiency of GRBs, which we find to be several times lower than radiatively efficient accretion in X-ray binaries and in agreement with theoretical expectations. These results provide additional support to the idea that at least some GRBs are powered by magnetars surrounded by an accretion disk. 
    more » « less
  4. We present a detailed follow-up of the very energetic GRB 210905A at a high redshift of z  = 6.312 and its luminous X-ray and optical afterglow. Following the detection by Swift and Konus- Wind , we obtained a photometric and spectroscopic follow-up in the optical and near-infrared (NIR), covering both the prompt and afterglow emission from a few minutes up to 20 Ms after burst. With an isotropic gamma-ray energy release of E iso = 1.27 −0.19 +0.20 × 10 54 erg, GRB 210905A lies in the top ∼7% of gamma-ray bursts (GRBs) in the Konus- Wind catalogue in terms of energy released. Its afterglow is among the most luminous ever observed, and, in particular, it is one of the most luminous in the optical at t  ≳ 0.5 d in the rest frame. The afterglow starts with a shallow evolution that can be explained by energy injection, and it is followed by a steeper decay, while the spectral energy distribution is in agreement with slow cooling in a constant-density environment within the standard fireball theory. A jet break at ∼46.2 ± 16.3 d (6.3 ± 2.2 d rest-frame) has been observed in the X-ray light curve; however, it is hidden in the H band due to a constant contribution from the host galaxy and potentially from a foreground intervening galaxy. In particular, the host galaxy is only the fourth GRB host at z  > 6 known to date. By assuming a number density n  = 1 cm −3 and an efficiency η  = 0.2, we derived a half-opening angle of 8.4 ° ±1.0°, which is the highest ever measured for a z  ≳ 6 burst, but within the range covered by closer events. The resulting collimation-corrected gamma-ray energy release of ≃1 × 10 52 erg is also among the highest ever measured. The moderately large half-opening angle argues against recent claims of an inverse dependence of the half-opening angle on the redshift. The total jet energy is likely too large to be sustained by a standard magnetar, and it suggests that the central engine of this burst was a newly formed black hole. Despite the outstanding energetics and luminosity of both GRB 210905A and its afterglow, we demonstrate that they are consistent within 2 σ with those of less distant bursts, indicating that the powering mechanisms and progenitors do not evolve significantly with redshift. 
    more » « less
  5. Abstract

    Gamma-ray bursts (GRBs) are traditionally classified as either short GRBs with durations ≲2 s that are powered by compact object mergers or long GRBs with durations ≳2 s that are powered by the deaths of massive stars. Recent results, however, have challenged this dichotomy and suggest that there exists a population of merger-driven long bursts. One such example, GRB 191019A, has at90≈ 64 s, but many of its other properties—including its host galaxy, afterglow luminosity and lack of associated supernova—are more consistent with a short GRB. Here we propose an alternative interpretation: that GRB 191019A (which is located in the nucleus of its host) is an atypical jetted tidal disruption event (TDE). In particular, we suggest the short timescale and rapid decline, not expected for standard TDEs, are the result of an “ultradeep” encounter, in which the star came well within the tidal radius of the black hole and promptly self-intersected, circularized, accreted, and launched a relativistic outflow. This model reproduces the timescale and luminosity through a prompt super-Eddington accretion phase and accounts for the lack of late optical emission. This would make GRB 191019A only the fifth jetted TDE and the first discovered ultradeep TDE. The ultradeep TDE model can be distinguished from merger-driven long GRBs via the soft X-ray flash that results from prompt self-intersection of the debris stream; the detection of this flash will be possible with wide-field and soft-X-ray satellites such as Einstein Probe or SVOM.

     
    more » « less