skip to main content


Search for: All records

Award ID contains: 1816694

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Despite a generally accepted framework for describing the gamma-ray burst (GRB) afterglows, the nature of the compact object at the central engine and the mechanism behind the prompt emission remain debated. The striped jet model is a promising venue to connect the various GRB stages since it gives a robust prediction for the relation of jet bulk acceleration, magnetization, and dissipation profile as a function of distance. Here, we use the constraints of the magnetization and bulk Lorentz of the jet flow at the large scales, where the jet starts interacting with the ambient gas in a large sample of bursts to (i) test the striped jet model for the GRB flow and (ii) study its predictions for the prompt emission and the constraints on the nature of the central engine. We find that the peak of the photospheric component of the emission predicted by the model is in agreement with the observed prompt emission spectra in the majority of the bursts in our sample, with a radiative efficiency of about 10 per cent. Furthermore, we adopt two different approaches to correlate the peak energies of the bursts with the type of central engine to find that more bursts are compatible with a neutron star central engine compared to a black hole one. Lastly, we conclude that the model favours broader distribution of stripe length-scales which results in a more gradual dissipation profile in comparison to the case, where the jet stripes are characterized by a single length-scale.

     
    more » « less
  2. Abstract

    For the first ∼3 yrs after the binary neutron star merger event GW 170817, the radio and X-ray radiation has been dominated by emission from a structured relativistic off-axis jet propagating into a low-density medium withn< 0.01 cm−3. We report on observational evidence for an excess of X-ray emission atδt> 900 days after the merger. WithLx≈ 5 × 1038erg s−1at 1234 days, the recently detected X-ray emission represents a ≥3.2σ(Gaussian equivalent) deviation from the universal post-jet-break model that best fits the multiwavelength afterglow at earlier times. In the context ofJetFitafterglow models, current data represent a departure with statistical significance ≥3.1σ, depending on the fireball collimation, with the most realistic models showing excesses at the level of ≥3.7σ. A lack of detectable 3 GHz radio emission suggests a harder broadband spectrum than the jet afterglow. These properties are consistent with the emergence of a new emission component such as synchrotron radiation from a mildly relativistic shock generated by the expanding merger ejecta, i.e., a kilonova afterglow. In this context, we present a set of ab initio numerical relativity binary neutron star (BNS) merger simulations that show that an X-ray excess supports the presence of a high-velocity tail in the merger ejecta, and argues against the prompt collapse of the merger remnant into a black hole. Radiation from accretion processes on the compact-object remnant represents a viable alternative. Neither a kilonova afterglow nor accretion-powered emission have been observed before, as detections of BNS mergers at this phase of evolution are unprecedented.

     
    more » « less
  3. ABSTRACT

    GW170817/GRB170817A has offered unprecedented insight into binary neutron star post-merger systems. Its Prompt and afterglow emission imply the presence of a tightly collimated relativistic jet with a smooth transverse structure. However, it remains unclear whether and how the central engine can produce such structured jets. Here, we utilize 3D general relativistic magnetohydrodynamic simulations starting with a black hole surrounded by a magnetized torus with properties typically expected of a post-merger system. We follow the jet, as it is self-consistently launched, from the scale of the compact object out to more than three orders of magnitude in distance. We find that this naturally results in a structured jet, which is collimated by the disc wind into a half-opening angle of roughly 10°; its emission can explain features of both the prompt and afterglow emission of GRB170817A for a 30° observing angle. Our work is the first to compute the afterglow, in the context of a binary merger, from a relativistic magnetized jet self-consistently generated by an accreting black hole, with the jet’s transverse structure determined by the accretion physics and not prescribed at any point.

     
    more » « less
  4. The recent multi-messenger and multi-wavelength observations of gamma-ray bursts (GRBs) have encouraged renewed interest in these energetic events. In spite of the substantial amount of data accumulated during the past few decades, the nature of the prompt emission remains an unsolved puzzle. We present an overview of the leading models for their prompt emission phase, focusing on the perspective opened by future missions. 
    more » « less
  5. Abstract We present a population of 19 radio-luminous supernovae (SNe) with emission reaching L ν ∼ 10 26 –10 29 erg s −1 Hz −1 in the first epoch of the Very Large Array Sky Survey (VLASS) at 2–4 GHz. Our sample includes one long gamma-ray burst, SN 2017iuk/GRB 171205A, and 18 core-collapse SNe detected at ≈1–60 yr after explosion. No thermonuclear explosion shows evidence for bright radio emission, and hydrogen-poor progenitors dominate the subsample of core-collapse events with spectroscopic classification at the time of explosion (79%). We interpret these findings in the context of the expected radio emission from the forward shock interaction with the circumstellar medium (CSM). We conclude that these observations require a departure from the single wind–like density profile (i.e., ρ CSM ∝ r −2 ) that is expected around massive stars and/or from a spherical Newtonian shock. Viable alternatives include the shock interaction with a detached, dense shell of CSM formed by a large effective progenitor mass-loss rate, M ̇ ∼ 10 − 4 – 10 − 1 M ⊙ yr −1 (for an assumed wind velocity of 1000 km s −1 ); emission from an off-axis relativistic jet entering our line of sight; or the emergence of emission from a newly born pulsar-wind nebula. The relativistic SN 2012ap that is detected 5.7 and 8.5 yr after explosion with L ν ∼ 10 28 erg s −1 Hz −1 might constitute the first detections of an off-axis jet+cocoon system in a massive star. However, none of the VLASS SNe with archival data points are consistent with our model off-axis jet light curves. Future multiwavelength observations will distinguish among these scenarios. Our VLASS source catalogs, which were used to perform the VLASS cross-matching, are publicly available at https://doi.org/10.5281/zenodo.4895112 . 
    more » « less
  6. null (Ed.)
  7. null (Ed.)
  8. ABSTRACT The central engine in long gamma-ray bursts (GRBs) is thought to be a compact object produced by the core collapse of massive stars, but its exact nature (black hole or millisecond magnetar) is still debatable. Although the central engine of GRB collapsars is hidden to direct observation, its properties may be imprinted on the accompanying electromagnetic signals. We aim to decipher the generic properties of central engines that are consistent with prompt observations of long GRBs detected by the Burst Alert Telescope (BAT) on board the Neil Gehrels Swift Observatory. Adopting a generic model for the central engine, in which the engine power and activity time-scale are independent of each other, we perform Monte Carlo simulations of long GRBs produced by jets that successfully breakout from the star. Our simulations consider the dependence of the jet breakout time-scale on the engine luminosity and the effects of the detector’s flux threshold. The two-dimensional (2D) distribution of simulated detectable bursts in the gamma-ray luminosity versus gamma-ray duration plane is consistent with the observed one for a range of parameter values describing the central engine. The intrinsic 2D distribution of simulated collapsar GRBs peaks at lower gamma-ray luminosities and longer durations than the observed one, a prediction that can be tested in the future with more sensitive detectors. Black hole accretors, whose power and activity time are set by the large-scale magnetic flux through the progenitor star and stellar structure, respectively, are compatible with the properties of the central engine inferred by our model. 
    more » « less