Abstract Understanding evolutionary responses to variation in temperature and precipitation across species ranges is of fundamental interest given ongoing climate change. The importance of temperature and precipitation for multiple aspects of bumble bee (Bombus) biology, combined with large geographic ranges that expose populations to diverse environmental pressures, make these insects well‐suited for studying local adaptation. Here, we analyzed genome‐wide sequence data from two widespread bumble bees,Bombus vosnesenskiiandBombus vancouverensis, using multiple environmental association analysis methods to investigate climate adaptation across latitude and altitude. The strongest signatures of selection were observed inB. vancouverensis, but despite unique responses between species for most loci, we detected several shared responses. Genes relating to neural and neuromuscular function and ion transport were especially evident with respect to temperature variables, while genes relating to cuticle formation, tracheal and respiratory system development, and homeostasis were associated with precipitation variables. Our data thus suggest that adaptive responses for tolerating abiotic variation are likely to be complex, but that several parallels among species can emerge even for these complex traits and landscapes. Results provide the framework for future work into mechanisms of thermal and desiccation tolerance in bumble bees and a set of genomic targets that might be monitored for future conservation efforts.
more »
« less
De Novo Genome Assemblies for Three North American Bumble Bee species: Bombus bifarius , Bombus vancouverensis , and Bombus vosnesenskii
Bumble bees are ecologically and economically important insect pollinators. Three abundant and widespread species in western North America, Bombus bifarius, Bombus vancouverensis, and Bombus vosnesenskii, have been the focus of substantial research relating to diverse aspects of bumble bee ecology and evolutionary biology. We present de novo genome assemblies for each of the three species using hybrid assembly of Illumina and Oxford Nanopore Technologies sequences. All three assemblies are of high quality with large N50s (> 2.2 Mb), BUSCO scores indicating > 98% complete genes, and annotations producing 13,325 - 13,687 genes, comparing favorably with other bee genomes. Analysis of synteny against the most complete bumble bee genome, Bombus terrestris, reveals a high degree of collinearity. These genomes should provide a valuable resource for addressing questions relating to functional genomics and evolutionary biology in these species.
more »
« less
- Award ID(s):
- 1921585
- PAR ID:
- 10171881
- Date Published:
- Journal Name:
- G3
- ISSN:
- 2160-1836
- Page Range / eLocation ID:
- g3.401437.2020
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Vogel, K (Ed.)Abstract We present the first chromosome-level genome assembly for Bombus pensylvanicus, a historically widespread native pollinator species that was distributed across eastern North America but has subsequently undergone declines in range area and local relative abundance. This species has been of significant interest as a model for understanding both patterns and possible causes of bumble bee decline in the region, including the role of genetic variation. Here we present a chromosome-level reference genome assembled using Pacific Biosciences singe-molecule HiFi sequences and Hi-C data and annotated using evidence derived from RNA sequencing of multiple tissue types. The B. pensylvanicus genome has a total length of ∼352.6 Mb and was assembled into a total of 224 scaffolds, with 19 primary pseudomolecules representing putative chromosomes and an N50 = 14.872 Mb. Annotation with the Eukaryotic Genome Annotation Pipeline—External (EGAPx) identified 11,411 genes (10,263 protein coding), and BUSCO analysis of 5,991 Hymenoptera-specific BUSCO groups indicated a completeness for the proteins of 99.0% (98.6% single-copy, 0.5% duplicated) and for the genome of 98.5% (98.2% single-copy, 0.3% duplicated). We present synteny analyses with other recently assembled Bombus genomes representing different subgenera and examine the distribution of repetitive regions of the genome relative to the distribution of genes and noncoding RNAs.more » « less
-
Vogel, K (Ed.)Abstract The Hunt bumble bee, Bombus huntii, is a widely distributed pollinator in western North America. The species produces large colony sizes in captive rearing conditions, experiences low parasite and pathogen loads, and has been demonstrated to be an effective pollinator of tomatoes grown in controlled environment agriculture systems. These desirable traits have galvanized producer efforts to develop commercial Bombus huntii colonies for growers to deliver pollination services to crops. To better understand Bombus huntii biology and support population genetic studies and breeding decisions, we sequenced and assembled the Bombus huntii genome from a single haploid male. High-fidelity sequencing of the entire genome using PacBio, along with HiC sequencing, led to a comprehensive contig assembly of high continuity. This assembly was further organized into a chromosomal arrangement, successfully identifying 18 chromosomes spread across the 317.4 Mb assembly with a BUSCO score indicating 97.6% completeness. Synteny analysis demonstrates shared chromosome number (n = 18) with Bombus terrestris, a species belonging to a different subgenus, matching the expectation that presence of 18 haploid chromosomes is an ancestral trait at least between the subgenera Pyrobombus and Bombus sensu stricto. In conclusion, the assembly outcome, alongside the minimal tissue sampled destructively, showcases efficient techniques for producing a comprehensive, highly contiguous genome.more » « less
-
Bumble bees are characterized by their thick setal pile that imparts aposematic color patterns often used for species-level identification. Like all bees, the single-celled setae of bumble bees are branched, an innovation thought important for pollen collection. To date no studies have quantified the types of setal morphologies and their distribution on these bees, information that can facilitate understanding of their adaptive ecological function. This study defines several major setal morphotypes in the common eastern bumble bee Bombus impatiens Cresson, revealing these setal types differ by location across the body. The positions of these types of setae are similar across individuals, castes, and sexes within species. We analyzed the distribution of the two most common setal types (plumose and spinulate) across the body dorsum of half of the described bumble bee species. This revealed consistently high density of plumose (long-branched) setae across bumble bees on the head and mesosoma, but considerable variation in the amount of metasomal plumosity. Variation on the metasoma shows strong phylogenetic signal at subgeneric and smaller group levels, making it a useful trait for species delimitation research, and plumosity has increased from early Bombus ancestors. The distribution of these setal types suggests these setae may serve several functions, including pollen-collecting and thermoregulatory roles, and probable mechanosensory functions. This study further examines how and when setae of the pile develop, evidence for mechanosensory function, and the timing of pigmentation as a foundation for future genetic and developmental research in these bees.more » « less
-
Ware, Jessica (Ed.)Abstract Broadly distributed species experience divergent abiotic conditions across their ranges that may drive local adaptation. Montane systems where populations are distributed across both latitudinal and elevational gradients are especially likely to produce local adaptation due to spatial variation in multiple abiotic factors, including temperature, oxygen availability, and air density. We use whole-genome resequencing to evaluate the landscape genomics of Bombus vancouverensis Cresson (Hymenoptera: Apidae), a common montane bumble bee that is distributed throughout the western part of North America. Combined statistical approaches revealed several large windows of outlier SNPs with unusual levels of differentiation across the region and indicated that isothermality and elevation were the environmental features most strongly associated with these variants. Genes found within these regions had diverse biological functions, but included neuromuscular function, ion homeostasis, oxidative stress, and hypoxia that could be associated with tolerance of temperature, desiccation, or high elevation conditions. The whole-genome sequencing approach revealed outliers occurred in genome regions with elevated linkage disequilibrium, elevated mean FST, and low intrapopulation nucleotide diversity. Other kinds of structural variations were not widely associated with environmental predictors but did broadly match geographic separation. Results are consistent with other studies suggesting that regions of low recombination may harbor adaptive variation in bumble bees within as well as between species and refine our understanding of candidate genes that could be further investigated as possible targets of selection across the B. vancouverensis range.more » « less
An official website of the United States government

