skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Synthesis of a Water-Soluble, Soft N-Donor BTzBP Ligand Containing Only CHON
A hydrophilic ligand that contains only C, H, O, and N substituents and uses a 6,6′-bis(1H-1,2,3-triazol-4-yl)-2,2′-bipyridine (BTzBP) structural core has been synthesized. The effect of adding water-soluble groups onto extractant ligands has been extensively studied to facilitate the efficient partitioning of 4f and transuranic 5f elements for the treatment of spent nuclear fuel. Soft, N-donor ligands exhibit greater binding affinities for the trivalent actinides over the trivalent lanthanides, making BTzBP ligands an ideal candidate in the search for extractants to be used on an industrial scale. To date, hydrophobic BTzBPs have been shown to exhibit physical and chemical properties that might be conducive to nuclear waste processing conditions. However, hydrophilic BTzBPs have yet to be reported. Herein, we show the synthesis of a hydrophilic BTzBP ligand featuring cationic water solubilizing groups attached to the bipyridal rings.  more » « less
Award ID(s):
1827905
PAR ID:
10171933
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Synlett
ISSN:
0936-5214
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Mono‐N‐protected amino acids (MPAAs) are increasingly common ligands in Pd‐catalyzed C−H functionalization reactions. Previous studies have shown how these ligands accelerate catalytic turnover by facilitating the C−H activation step. Here, it is shown that MPAA ligands exhibit a second property commonly associated with ligand‐accelerated catalysis: the ability to support catalytic turnover at substoichiometric ligand‐to‐metal ratios. This catalytic role of the MPAA ligand is characterized in stoichiometric C−H activation and catalytic C−H functionalization reactions. Palladacycle formation with substrates bearing carboxylate and pyridine directing groups exhibit a 50–100‐fold increase in rate when only 0.05 equivalents of MPAA are present relative to PdII. These and other mechanistic data indicate that facile exchange between MPAAs and anionic ligands coordinated to PdIIenables a single MPAA to support C−H activation at multiple PdIIcenters. 
    more » « less
  2. Two‐coordinate carbene Cu(Ι) amide complexes with sterically bulky groups such as the diisopropyl phenyl (dipp) on the carbenes have been shown to have comparable performance to the phosphorescent emitters bearing heavy atoms such as iridium and platinum. These bulky groups enforce a coplanar molecular structure and suppress the nonradiative decay rates. Here, three different two‐coordinate Cu(Ι) complexes were investigated that bear a common thiazole carbene, 3‐(2,6‐diisopropylphenyl)‐4,5‐dimethylthiazol‐2‐ylidene, with only a single dipp group, and carbazolyl ligands with substituents of varying steric bulkorthoto N. These substituents have a negligible impact on luminescence energies of the complexes but serve to modulate the rotation barriers along the metal–ligand coordinate bond. The geometric arrangement of ligands (syn‐ oranti‐conformer) in complexes with alkyl substituents were found to differ, beingsynin the solid state versusantiin solution as revealed by crystallographic analysis and nuclear magnetic resonance spectroscopy. In addition, calculations were performed to determine potential energy surfaces for different conformations of the three complexes to provide a theoretical evaluation of rotation barriers around the metal–ligand bond axis. The relationship between rotation barriers and photophysical properties demonstrate that rates for nonradiative decay decrease with increasing bulk of the substituents on the carbazolyl ligand. 
    more » « less
  3. Abstract Janus nanoparticles capped with a hydrophobic and hydrophilic hemisphere of mercapto ligands can self‐assemble into hollow, emulsion‐like nanostructures in controlled media. As the nanoparticle emulsions are chiroptically active exhibiting a plasmonic circular dichroism absorption in the visible range, they can be exploited as a unique chiral nanoreactor by selective encapsulation ofd‐enantiomer into the water phase of the water‐in‐oil emulsions for directional functionalization of the nanoparticles and endow the resulting nanoparticles with select chirality. This is demonstrated in the present study with gold Janus nanoparticles functionalized with (hydrophobic) hexanethiolates and (hydrophilic) 3‐mercapto‐1,2‐propandiol, andd,l‐cysteine is used as the molecular probe. Experimental results demonstrate thatd‐cysteine is the preferred enantiomers entrapped within the nanoparticle emulsions, where the ensuing ligand exchange reaction is initially confined to the hydrophilic face of the Janus nanoparticles. This suggests that with a deliberate control of the reaction time, chiral Janus nanoparticles can be readily prepared by ligand exchange reactions even with a racemic mixture of ligands. 
    more » « less
  4. Abstract In this study, the binding of multimodal chromatographic ligands to the IgG1 FCdomain were studied using nuclear magnetic resonance and molecular dynamics simulations. Nuclear magnetic resonance experiments carried out with chromatographic ligands and a perdeuterated15N‐labeled FCdomain indicated that while single‐mode ion exchange ligands interacted very weakly throughout the FCsurface, multimodal ligands containing negatively charged and aromatic moieties interacted with specific clusters of residues with relatively high affinity, forming distinct binding regions on the FC. The multimodal ligand‐binding sites on the FCwere concentrated in the hinge region and near the interface of the CH2 and CH3 domains. Furthermore, the multimodal binding sites were primarily composed of positively charged, polar, and aliphatic residues in these regions, with histidine residues exhibiting some of the strongest binding affinities with the multimodal ligand. Interestingly, comparison of protein surface property data with ligand interaction sites indicated that the patch analysis on FCcorroborated molecular‐level binding information obtained from the nuclear magnetic resonance experiments. Finally, molecular dynamics simulation results were shown to be qualitatively consistent with the nuclear magnetic resonance results and to provide further insights into the binding mechanisms. An important contribution to multimodal ligand‐FCbinding in these preferred regions was shown to be electrostatic interactions and π–π stacking of surface‐exposed histidines with the ligands. This combined biophysical and simulation approach has provided a deeper molecular‐level understanding of multimodal ligand–FCinteractions and sets the stage for future analyses of even more complex biotherapeutics. 
    more » « less
  5. Achieving control of phase memory relaxation times ( T m ) in metal ions is an important goal of molecular spintronics. Herein we provide the first evidence that nuclear-spin patterning in the ligand shell is an important handle to modulate T m in metal ions. We synthesized and studied a series of five V( iv ) complexes with brominated catecholate ligands, [V(C 6 H 4−n Br n O 2 ) 3 ] 2− ( n = 0, 1, 2, and 4), where the 79/81 Br and 1 H nuclear spins are arranged in different substitutional patterns. High-field, high-frequency (120 GHz) pulsed electron paramagnetic resonance spectroscopic analysis of this series reveals a pattern-dependent variation in T m for the V( iv ) ion. Notably, we show that it is possible for two molecules to have starkly different (by 50%) T m values despite the same chemical composition. Nuclear magnetic resonance analyses of the protons on the ligand shell suggest that relative chemical shift ( δ ), controlled by the patterning of nuclear spins, is an important underlying design principle. Here, having multiple ligand-based protons with nearly identical chemical shift values in the ligand shell will, ultimately, engender a short T m for the bound metal ion. 
    more » « less