skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Dynamics Concept Inventory (DCI) – The Past, Present, and Future
The Dynamics Concept Inventory (DCI) was developed over 15 years ago as a tool for instructors teaching Dynamics to assess their students’ gains in conceptual understanding of the material. Since its initial release, there have been hundreds of downloads of the instrument, and the initial papers presenting the instrument have been referenced over 100 times. In this paper, we will 1) present a brief history of the development of the DCI, 2) evaluate the ways it has been used since its release with the hope of encouraging more engineering faculty members to use it, 3) summarize results from those who have used it, and 4) present plans for future development and distribution.  more » « less
Award ID(s):
1821638
PAR ID:
10172021
Author(s) / Creator(s):
;
Date Published:
Journal Name:
ASEE Annual Conference proceedings
ISSN:
1524-4644
Page Range / eLocation ID:
https://peer.asee.org/35304
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The open-source and community-supported gem5 simulator is one of the most popular tools for computer architecture research. This simulation infrastructure allows researchers to model modern computer hardware at the cycle level, and it has enough fidelity to boot unmodified Linux-based operating systems and run full applications for multiple architectures including x86, Arm, and RISC-V. The gem5 simulator has been under active development over the last nine years since the original gem5 release. In this time, there have been over 7500 commits to the codebase from over 250 unique contributors which have improved the simulator by adding new features, fixing bugs, and increasing the code quality. In this paper, we give and overview of gem5's usage and features, describe the current state of the gem5 simulator, and enumerate the major changes since the initial release of gem5. We also discuss how the gem5 simulator has transitioned to a formal governance model to enable continued improvement and community support for the next 20 years of computer architecture research. 
    more » « less
  2. The open-source and community-supported gem5 simulator is one of the most popular tools for computer architecture research. This simulation infrastructure allows researchers to model modern computer hardware at the cycle level, and it has enough fidelity to boot unmodified Linux-based operating systems and run full applications for multiple architectures including x86, Arm, and RISC-V. The gem5 simulator has been under active development over the last nine years since the original gem5 release. In this time, there have been over 7500 commits to the codebase from over 250 unique contributors which have improved the simulator by adding new features, fixing bugs, and increasing the code quality. In this paper, we give and overview of gem5's usage and features, describe the current state of the gem5 simulator, and enumerate the major changes since the initial release of gem5. We also discuss how the gem5 simulator has transitioned to a formal governance model to enable continued improvement and community support for the next 20 years of computer architecture research. 
    more » « less
  3. Since its development in 2006, the Longitudinal Assessment of Engineering Self-Efficacy (LAESE) V3.0 instrument with six constructs indicated by 31 items has been a popular tool used in engineering education research in the United States. However, there has been lack of validity and reliability evidence in the literature beyond its initial development, with an indication of multicollinearity between its two engineering self-efficacy constructs. This study aimed to rescale the LAESE V3.0 through factor analyses after a modification of items, providing construct validity evidence for the revised instrument. With data from 997 engineering students at three institutions, exploratory and confirmatory factor analyses resulted in the Revised LAESE V3.0, consisting of 16 items loading across four factors in a good model fit range: Engineering Self-Efficacy, Engineering Career Expectations, Sense of Belonging, and Coping Self-Efficacy. The nonlinear SEM (structural equation modeling) reliability coefficients for individual factors ranged from .76 to .84, with the overall Omega for the ordinal data of .92, demonstrating acceptable internal consistency reliability. 
    more » « less
  4. There is significant work indicating that spatial ability has correlations to student success in STEM programs. Work also shows that spatial ability correlates to professional success in respective STEM fields. Spatial ability has thus been a focus of research in engineering education for some time. Spatial interventions have been developed to improve student’s spatial ability that range from physical manipulatives to the implementation of entire courses. These interventions have had positive impact upon student success and retention. Currently, researchers rely on a variety of different spatial ability instruments to quantify participants spatial ability. Researchers classify an individual’s spatial ability as the performance indicated by their results on such an instrument. It is recognized that this measured performance is constrained by the spatial construct targeted with that spatial instrument. As such, many instruments are available for the researchers use to assess the variety of constructs of spatial ability. Examples include the Purdue Spatial Visualization Test of Rotations (PSVTR), the Mental Cutting Test (MCT), and the Minnesota Paper Foam Board Test. However, at this time, there are no readily accessible spatial ability instruments that can be used to assess spatial ability in a blind or low vision population (BLV). Such an instrument would not only create an instrument capable of quantifying the impacts of spatially focused interventions upon BLV populations but also gives us a quantitative method to assess the effectiveness of spatial curriculum for BLV students. Additionally, it provides a method of assessing spatial ability development from tactile perspective, a new avenue for lines of research that expand beyond the visual methods typically used. This paper discusses the development of the Tactile Mental Cutting Test (TMCT), a non-visually accessible spatial ability instrument, developed and used with a BLV population. Data was acquired from individuals participating in National Federation of the Blind (NFB) Conventions across the United States as well as NFB sponsored summer engineering programs. The paper reports on a National Science Foundation funded effort to garner initial research findings on the application of the TMCT. It reports on initial findings of the instrument’s validity and reliability, as well as the development of the instrument over the first three years of this project. 
    more » « less
  5. null (Ed.)
    Integrated approaches to teaching science, technology, engineering, and mathematics (commonly referred to as STEM education) in K-12 classrooms have resulted in a growing number of teachers incorporating engineering in their science classrooms. Such changes are a result of shifts in science standards to include engineering as evidenced by the Next Generation Science Standards. To date, 20 states and the District of Columbia have adopted the NGSS and another 24 have adopted standards based on the Framework for K-12 Science Education. Despite the increased presence of engineering and integrated STEM education in K-12 education, there are several concerns to consider. One concern is the limited availability of observation instruments appropriate for instruction where multiple STEM disciplines are present and integrated with one another. Addressing this concern requires the development of a new observation instrument, designed with integrated STEM instruction in mind. An instrument such as this has implications for both research and practice. For example, research using this instrument could help educators compare integrated STEM instruction across grade bands. Additionally, this tool could be useful in the preparation of pre-service teachers and professional development of in-service teachers new to integrated STEM education and formative learning through professional learning communities or classroom coaching. The work presented here describes in detail the development of an integrated STEM observation instrument that can be used for both research and practice. Over a period of approximately 18-months, a team of STEM educators and educational researchers developed a 10-item integrated STEM observation instrument for use in K-12 science and engineering classrooms. The process of developing the instrument began with establishing a conceptual framework, drawing on the integrated STEM research literature, national standards documents, and frameworks for both K-12 engineering education and integrated STEM education. As part of the instrument development process, the project team had access to over 2000 classroom videos where integrated STEM education took place. Initial analysis of a selection of these videos helped the project team write a preliminary draft instrument consisting of 52 items. Through several rounds of revisions, including the construction of detailed scoring levels of the items and collapsing of items that significantly overlapped, and piloting of the instrument for usability, items were added, edited, and/or removed for various reasons. These reasons included issues concerning the intricacy of the observed phenomenon or the item not being specific to integrated STEM education (e.g., questioning). In its final form, the instrument consists of 10 items, each comprising four descriptive levels. Each item is also accompanied by a set of user guidelines, which have been refined by the project team as a result of piloting the instrument and reviewed by external experts in the field. The instrument has shown to be reliable with the project team and further validation is underway. This instrument will be of use to a wide variety of educators and educational researchers looking to understand the implementation of integrated STEM education in K-12 science and engineering classrooms. 
    more » « less