skip to main content


Title: Supporting Perception of Weight through Motion-induced Sensory Conflicts in Robot Teleoperation
In this paper, we design and evaluate a novel form of visually-simulated haptic feedback cue for communicating weight in robot teleoperation. We propose that a visuo-proprioceptive cue results from inconsistencies created between the user's visual and proprioceptive senses when the robot's movement differs from the movement of the user's input. In a user study where participants teleoperate a six-DoF robot arm, we demonstrate the feasibility of using such a cue for communicating weight in four telemanipulation tasks to enhance user experience and task performance.  more » « less
Award ID(s):
1830242
NSF-PAR ID:
10172191
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
HRI '20: Proceedings of the 2020 ACM/IEEE International Conference on Human-Robot Interaction
Page Range / eLocation ID:
509 to 517
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Spatial perception of our hand is closely linked to our ability to move the hand accurately. We might therefore expect that reach planning would take into account any changes in perceived hand position; in other words, that perception and action relating to the hand should depend on a common sensorimotor map. However, there is evidence to suggest that changes in perceived hand position affect a body representation that functions separately from the body representation used to control movement. Here, we examined target-directed reaching before and after participants either did (Mismatch group) or did not (Veridical group) experience a cue conflict known to elicit recalibration in perceived hand position. For the reaching task, participants grasped a robotic manipulandum that positioned their unseen hand for each trial. Participants then briskly moved the handle straight ahead to a visual target, receiving no performance feedback. For the perceptual calibration task, participants estimated the locations of visual, proprioceptive, or combined cues about their unseen hand. The Mismatch group experienced a gradual 70-mm forward mismatch between visual and proprioceptive cues, resulting in forward proprioceptive recalibration. Participants made significantly shorter reaches after this manipulation, consistent with feeling their hand to be further forward than it was, but reaching performance returned to baseline levels after only 10 reaches. The Veridical group, after exposure to veridically aligned visual and proprioceptive cues about the hand, showed no change in reach distance. These results suggest that perceptual recalibration affects the same sensorimotor map that is used to plan target-directed reaches. NEW & NOTEWORTHY If perceived hand position changes, we might assume this affects the sensorimotor map and, in turn, reaches made with that hand. However, there is evidence for separate body representations involved in perception versus action. After a cross-sensory conflict that results in proprioceptive recalibration in the forward direction, participants made shorter reaches as predicted, but only briefly. This suggests perceptual recalibration does affect the sensorimotor map used to plan reaches, but the interaction may be short-lived. 
    more » « less
  2. Proprioception or body awareness is an essential sense that aids in the neural control of movement. Proprioceptive impairments are commonly found in people with neurological conditions such as stroke and Parkinson’s disease. Such impairments are known to impact the patient’s quality of life. Robot-aided proprioceptive training has been proposed and tested to improve sensorimotor performance. However, such robot-aided exercises are implemented similar to many physical rehabilitation exercises, requiring task-specific and repetitive movements from patients. Monotonous nature of such repetitive exercises can result in reduced patient motivation, thereby, impacting treatment adherence and therapy gains. Gamification of exercises can make physical rehabilitation more engaging and rewarding. In this work, we discuss our ongoing efforts to develop a game that can accompany a robot-aided wrist proprioceptive training exercise. 
    more » « less
  3. In a future of pervasive augmented reality (AR), AR systems will need to be able to efficiently draw or guide the attention of the user to visual points of interest in their physical-virtual environment. Since AR imagery is overlaid on top of the user's view of their physical environment, these attention guidance techniques must not only compete with other virtual imagery, but also with distracting or attention-grabbing features in the user's physical environment. Because of the wide range of physical-virtual environments that pervasive AR users will find themselves in, it is difficult to design visual cues that “pop out” to the user without performing a visual analysis of the user's environment, and changing the appearance of the cue to stand out from its surroundings. In this paper, we present an initial investigation into the potential uses of dichoptic visual cues for optical see-through AR displays, specifically cues that involve having a difference in hue, saturation, or value between the user's eyes. These types of cues have been shown to be preattentively processed by the user when presented on other stereoscopic displays, and may also be an effective method of drawing user attention on optical see-through AR displays. We present two user studies: one that evaluates the saliency of dichoptic visual cues on optical see-through displays, and one that evaluates their subjective qualities. Our results suggest that hue-based dichoptic cues or “Forbidden Colors” may be particularly effective for these purposes, achieving significantly lower error rates in a pop out task compared to value-based and saturation-based cues. 
    more » « less
  4. Despite promising results in the rehabilitation field, it remains unclear whether upper limb robotic wearables, e.g., for people with physical impairments resulting from neurodegenerative disease, can be made portable and suitable for everyday use. We present a lightweight, fully portable, textile-based, soft inflatable wearable robot for shoulder elevation assistance that provides dynamic active support to the upper limbs. The technology is mechanically transparent when unpowered, can quantitatively assess free movement of the user, and adds only 150 grams of weight to each upper limb. In 10 individuals with amyotrophic lateral sclerosis (ALS) with different degrees of neuromuscular impairment, we demonstrated immediate improvement in the active range of motion and compensation for continuing physical deterioration in two individuals with ALS over 6 months. Along with improvements in movement, we show that this robotic wearable can improve functional activity without any training, restoring performance of basic activities of daily living. In addition, a reduction in shoulder muscle activity and perceived muscular exertion, coupled with increased endurance for holding objects, highlight the potential of this device to mitigate the impact of muscular fatigue for patients with ALS. These results represent a further step toward everyday use of assistive, soft, robotic wearables for the upper limbs.

     
    more » « less
  5. This paper explores the feasibility of using sonification in delivering and communicating health and wellness status on personal devices. Ambient displays have proven to inform users of their health and wellness and help them to make healthier decisions, yet, little technology provides health assessments through sounds, which can be even more pervasive than visual displays. We developed a method to generate music from user preferences and evaluated it in a two-step user study. In the first step, we acquired general healthiness impressions from each user. In the second step, we generated customized melodies from music preferences in the first step to capture participants' perceived healthiness of those melodies. We deployed our surveys for 55 participants to complete on their own over 31 days. We analyzed the data to understand commonalities and differences in users' perceptions of music as an expression of health. Our findings show the existence of clear associations between perceived healthiness and different music features. We provide useful insights into how different musical features impact the perceived healthiness of music, how perceptions of healthiness vary between users, what trends exist between users' impressions, and what influences (or does not influence) a user's perception of healthiness in a melody. Overall, our results indicate validity in presenting health data through personalized music models. The findings can inform the design of behavior management applications on personal and ubiquitous devices. 
    more » « less