skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Supporting Perception of Weight through Motion-induced Sensory Conflicts in Robot Teleoperation
In this paper, we design and evaluate a novel form of visually-simulated haptic feedback cue for communicating weight in robot teleoperation. We propose that a visuo-proprioceptive cue results from inconsistencies created between the user's visual and proprioceptive senses when the robot's movement differs from the movement of the user's input. In a user study where participants teleoperate a six-DoF robot arm, we demonstrate the feasibility of using such a cue for communicating weight in four telemanipulation tasks to enhance user experience and task performance.  more » « less
Award ID(s):
1830242
PAR ID:
10172191
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
HRI '20: Proceedings of the 2020 ACM/IEEE International Conference on Human-Robot Interaction
Page Range / eLocation ID:
509 to 517
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. BackgroundUpper limb proprioceptive impairments are common after stroke and affect daily function. Recent work has shown that stroke survivors have difficulty using visual information to improve proprioception. It is unclear how eye movements are impacted to guide action of the arm after stroke. Here, we aimed to understand how upper limb proprioceptive impairments impact eye movements in individuals with stroke. MethodsControl (N = 20) and stroke participants (N = 20) performed a proprioceptive matching task with upper limb and eye movements. A KINARM exoskeleton with eye tracking was used to assess limb and eye kinematics. The upper limb was passively moved by the robot and participants matched the location with either an arm or eye movement. Accuracy was measured as the difference between passive robot movement location and active limb matching (Hand-End Point Error) or active eye movement matching (Eye-End Point Error). ResultsWe found that individuals with stroke had significantly larger Hand (2.1×) and Eye-End Point (1.5×) Errors compared to controls. Further, we found that proprioceptive errors of the hand and eye were highly correlated in stroke participants ( r = .67, P = .001), a relationship not observed for controls. ConclusionsEye movement accuracy declined as a function of proprioceptive impairment of the more-affected limb, which was used as a proprioceptive reference. The inability to use proprioceptive information of the arm to coordinate eye movements suggests that disordered proprioception impacts integration of sensory information across different modalities. These results have important implications for how vision is used to actively guide limb movement during rehabilitation. 
    more » « less
  2. Proprioception or body awareness is an essential sense that aids in the neural control of movement. Proprioceptive impairments are commonly found in people with neurological conditions such as stroke and Parkinson’s disease. Such impairments are known to impact the patient’s quality of life. Robot-aided proprioceptive training has been proposed and tested to improve sensorimotor performance. However, such robot-aided exercises are implemented similar to many physical rehabilitation exercises, requiring task-specific and repetitive movements from patients. Monotonous nature of such repetitive exercises can result in reduced patient motivation, thereby, impacting treatment adherence and therapy gains. Gamification of exercises can make physical rehabilitation more engaging and rewarding. In this work, we discuss our ongoing efforts to develop a game that can accompany a robot-aided wrist proprioceptive training exercise. 
    more » « less
  3. Previous work has identified age-related declines in proprioception within a narrow range of limb movements. It is unclear whether these declines are consistent across a broad range of movement characteristics that more closely represent daily living. Here we aim to characterize upper limb error in younger and older adults across a range of movement speeds and distances. The objective of this study was to determine how proprioceptive matching accuracy changes as a function of movement speed and distance, as well as understand the effects of aging on these accuracies. We used an upper limb robotic test of proprioception to vary the speed and distance of movement in two groups: younger (n = 20, 24.25 ± 3.34 years) and older adults (n = 21, 63 ± 10.74 years). The robot moved one arm and the participant was instructed to mirror-match the movement with their opposite arm. Participants matched seven different movement speeds (0.1–0.4 m/s) and five distances (7.5–17.5 cm) over 350 trials. Spatial (e.g., End Point Error) and temporal (e.g., Peak Speed Ratio) outcomes were used to quantify proprioceptive accuracy. Regardless of the speed or distance of movement, we found that older controls had significantly reduced proprioceptive matching accuracy compared to younger control participants (p ≤ 0.05). When movement speed was varied, we observed that errors in proprioceptive matching estimates of spatial and temporal measures were significantly higher for older adults for all but the slowest tested speed (0.1 m/s) for the majority of parameters. When movement distance was varied, we observed that errors in proprioceptive matching estimates were significantly higher for all distances, except for the longest distance (17.5 cm) for older adults compared to younger adults. We found that the magnitude of proprioceptive matching errors was dependent on the characteristics of the reference movement, and that these errors scaled increasingly with age. Our results suggest that aging significantly negatively impacts proprioceptive matching accuracy and that proprioceptive matching errors made by both groups lies along a continuum that depends on movement characteristics and that these errors are amplified due to the typical aging process. 
    more » « less
  4. In a future of pervasive augmented reality (AR), AR systems will need to be able to efficiently draw or guide the attention of the user to visual points of interest in their physical-virtual environment. Since AR imagery is overlaid on top of the user's view of their physical environment, these attention guidance techniques must not only compete with other virtual imagery, but also with distracting or attention-grabbing features in the user's physical environment. Because of the wide range of physical-virtual environments that pervasive AR users will find themselves in, it is difficult to design visual cues that “pop out” to the user without performing a visual analysis of the user's environment, and changing the appearance of the cue to stand out from its surroundings. In this paper, we present an initial investigation into the potential uses of dichoptic visual cues for optical see-through AR displays, specifically cues that involve having a difference in hue, saturation, or value between the user's eyes. These types of cues have been shown to be preattentively processed by the user when presented on other stereoscopic displays, and may also be an effective method of drawing user attention on optical see-through AR displays. We present two user studies: one that evaluates the saliency of dichoptic visual cues on optical see-through displays, and one that evaluates their subjective qualities. Our results suggest that hue-based dichoptic cues or “Forbidden Colors” may be particularly effective for these purposes, achieving significantly lower error rates in a pop out task compared to value-based and saturation-based cues. 
    more » « less
  5. Spatial perception of our hand is closely linked to our ability to move the hand accurately. We might therefore expect that reach planning would take into account any changes in perceived hand position; in other words, that perception and action relating to the hand should depend on a common sensorimotor map. However, there is evidence to suggest that changes in perceived hand position affect a body representation that functions separately from the body representation used to control movement. Here, we examined target-directed reaching before and after participants either did (Mismatch group) or did not (Veridical group) experience a cue conflict known to elicit recalibration in perceived hand position. For the reaching task, participants grasped a robotic manipulandum that positioned their unseen hand for each trial. Participants then briskly moved the handle straight ahead to a visual target, receiving no performance feedback. For the perceptual calibration task, participants estimated the locations of visual, proprioceptive, or combined cues about their unseen hand. The Mismatch group experienced a gradual 70-mm forward mismatch between visual and proprioceptive cues, resulting in forward proprioceptive recalibration. Participants made significantly shorter reaches after this manipulation, consistent with feeling their hand to be further forward than it was, but reaching performance returned to baseline levels after only 10 reaches. The Veridical group, after exposure to veridically aligned visual and proprioceptive cues about the hand, showed no change in reach distance. These results suggest that perceptual recalibration affects the same sensorimotor map that is used to plan target-directed reaches. NEW & NOTEWORTHY If perceived hand position changes, we might assume this affects the sensorimotor map and, in turn, reaches made with that hand. However, there is evidence for separate body representations involved in perception versus action. After a cross-sensory conflict that results in proprioceptive recalibration in the forward direction, participants made shorter reaches as predicted, but only briefly. This suggests perceptual recalibration does affect the sensorimotor map used to plan reaches, but the interaction may be short-lived. 
    more » « less