- Award ID(s):
- 1800961
- NSF-PAR ID:
- 10442385
- Date Published:
- Journal Name:
- IEEE Transactions on Visualization and Computer Graphics
- ISSN:
- 1077-2626
- Page Range / eLocation ID:
- 1 to 16
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Due to the additive light model employed by current optical see-through head-mounted displays (OST-HMDs), the perceived contrast of displayed imagery is reduced with increased environment luminance, often to the point where it becomes difficult for the user to accurately distinguish the presence of visual imagery. While existing contrast models, such as Weber contrast and Michelson contrast, can be used to predict when the observer will experience difficulty distinguishing and interpreting stimuli on traditional dis-plays, these models must be adapted for use with additive displays. In this paper, we present a simplified model of luminance contrast for optical see-through displays derived from Michelson's contrast equation and demonstrate two applications of the model: informing design decisions involving the color of virtual imagery and optimizing environment light attenuation through the use of neutral density filters.more » « less
-
Abstract Successful surgical operations are characterized by preplanning routines to be executed during actual surgical operations. To achieve this, surgeons rely on the experience acquired from the use of cadavers, enabling technologies like virtual reality (VR) and clinical years of practice. However, cadavers, having no dynamism and realism as they lack blood, can exhibit limited tissue degradation and shrinkage, while current VR systems do not provide amplified haptic feedback. This can impact surgical training increasing the likelihood of medical errors. This work proposes a novel Mixed Reality Combination System (MRCS) that pairs Augmented Reality (AR) technology and an inertial measurement unit (IMU) sensor with 3D printed, collagen-based specimens that can enhance task performance like planning and execution. To achieve this, the MRCS charts out a path prior to a user task execution based on a visual, physical, and dynamic environment on the state of a target object by utilizing surgeon-created virtual imagery that, when projected onto a 3D printed biospecimen as AR, reacts visually to user input on its actual physical state. This allows a real-time user reaction of the MRCS by displaying new multi-sensory virtual states of an object prior to performing on the actual physical state of that same object enabling effective task planning. Tracked user actions using an integrated 9-Degree of Freedom IMU demonstrate task execution This demonstrates that a user, with limited knowledge of specific anatomy, can, under guidance, execute a preplanned task. In addition, to surgical planning, this system can be generally applied in areas such as construction, maintenance, and education.
-
null (Ed.)Due to the additive light model employed by most optical see-through head-mounted displays (OST-HMDs), they provide the best augmented reality (AR) views in dark environments, where the added AR light does not have to compete against existing real-world lighting. AR imagery displayed on such devices loses a significant amount of contrast in well-lit environments such as outdoors in direct sunlight. To compensate for this, OST-HMDs often use a tinted visor to reduce the amount of environment light that reaches the user’s eyes, which in turn results in a loss of contrast in the user’s physical environment. While these effects are well known and grounded in existing literature, formal measurements of the illuminance and contrast of modern OST-HMDs are currently missing. In this paper, we provide illuminance measurements for both the Microsoft HoloLens 1 and its successor the HoloLens 2 under varying environment lighting conditions ranging from 0 to 20,000 lux. We evaluate how environment lighting impacts the user by calculating contrast ratios between rendered black (transparent) and white imagery displayed under these conditions, and evaluate how the intensity of environment lighting is impacted by donning and using the HMD. Our results indicate the further need for refinement in the design of future OST-HMDs to optimize contrast in environments with illuminance values greater than or equal to those found in indoor working environments.more » « less
-
Display technologies in the fields of virtual and augmented reality affect the appearance of human representations, such as avatars used in telepresence or entertainment applications, based on the user’s current viewing conditions. With changing viewing conditions, it is possible that the perceived appearance of one’s avatar changes in an unexpected or undesired manner, which may change user behavior towards these avatars and cause frustration in using the AR display. In this paper, we describe a user study (N=20) where participants saw themselves in a mirror standing next to their own avatar through use of a HoloLens 2 optical see-through head-mounted display. Participants were tasked to match their avatar’s appearance to their own under two environment lighting conditions (200 lux and 2,000 lux). Our results showed that the intensity of environment lighting had a significant effect on participants selected skin colors for their avatars, where participants with dark skin colors tended to make their avatar’s skin color lighter, nearly to the level of participants with light skin color. Further, in particular female participants made their avatar’s hair color darker for the lighter environment lighting condition. We discuss our results with a view on technological limitations and effects on the diversity of avatar representations on optical see-through displays.more » « less
-
Extended reality (XR) technologies, such as virtual reality (VR) and augmented reality (AR), provide users, their avatars, and embodied agents a shared platform to collaborate in a spatial context. Although traditional face-to-face communication is limited by users’ proximity, meaning that another human’s non-verbal embodied cues become more difficult to perceive the farther one is away from that person, researchers and practitioners have started to look into ways to accentuate or amplify such embodied cues and signals to counteract the effects of distance with XR technologies. In this article, we describe and evaluate the Big Head technique, in which a human’s head in VR/AR is scaled up relative to their distance from the observer as a mechanism for enhancing the visibility of non-verbal facial cues, such as facial expressions or eye gaze. To better understand and explore this technique, we present two complimentary human-subject experiments in this article. In our first experiment, we conducted a VR study with a head-mounted display to understand the impact of increased or decreased head scales on participants’ ability to perceive facial expressions as well as their sense of comfort and feeling of “uncannniness” over distances of up to 10 m. We explored two different scaling methods and compared perceptual thresholds and user preferences. Our second experiment was performed in an outdoor AR environment with an optical see-through head-mounted display. Participants were asked to estimate facial expressions and eye gaze, and identify a virtual human over large distances of 30, 60, and 90 m. In both experiments, our results show significant differences in minimum, maximum, and ideal head scales for different distances and tasks related to perceiving faces, facial expressions, and eye gaze, and we also found that participants were more comfortable with slightly bigger heads at larger distances. We discuss our findings with respect to the technologies used, and we discuss implications and guidelines for practical applications that aim to leverage XR-enhanced facial cues.more » « less