skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Push and Pull: Shepherding Multi-Agent Robot Teams in Adversarial Situations
Teams of robots tasked with making critical decisions in competitive environments are at risk for being shepherded or misdirected to a location that is advantageous for a competing team. Our lab is working to understand how adversarial teams of robots can successfully move their competition to desired locations in part so that we can then devise practices to counter these strategies and help make team functioning more successful and secure. In this paper, preliminary research is presented that studies how a team of robots can be shepherded or misdirected to a disadvantageous location. We draw inspiration from herding practices as well as deceptive practices seen in higher-order primates and humans. We define behaviors for the target (mark) agents to be moved as well as members of the shepherding team (a pushing agent and pulling shills) and present simulation results showing how these behaviors move robots to a desired location. These behaviors were implemented and trialed on hardware platform. A discussion of ongoing research into understanding misdirection in multi-robot teams concludes this paper.  more » « less
Award ID(s):
1848653
NSF-PAR ID:
10172216
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of 15th IEEE International Conference on Advanced Robotics and Its SOcial Impacts (ARSO-2019)
Page Range / eLocation ID:
407 to 414
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    At the start of their work for the National Science Foundation’s Revolutionizing Engineering Departments (RED) Program (IUSE/Professional Formation of Engineers, NSF 19-614), RED teams face a variety of challenges. Not only must they craft a shared vision for their projects and create strategic partnerships across their campuses to move the project forward, they must also form a new team and communicate effectively within the team. Our work with RED teams over the past 5 years has highlighted the common challenges these teams face at the start, and for that reason, we have developed the RED Start Up Session, a ½ day workshop that establishes best practices for RED teams’ work and allows for early successes in these five year projects. As the RED Participatory Action Research team (REDPAR)--comprised of individuals from Rose-Hulman Institute of Technology and the University of Washington--we have taken the research data collected as we work with RED teams and translated it into practical strategies that can benefit RED teams as they embark on their projects. This presentation will focus on the content and organization of the Start Up Session and how these lessons learned can contribute to the furthering of the goals of the RED program: to design “revolutionary new approaches to engineering education,” focusing on “organizational and cultural change within the departments, involving students, faculty, staff, and industry in rethinking what it means to provide an engineering program.” We see the Start Up Session as an important first step in the RED team establishing an identity as a team and learning how to work effectively together. We also encourage new RED teams to learn from the past, through a panel discussion with current RED team members who fill various roles on the teams: engineering education researcher, project manager, project PI, disciplinary faculty, social scientist, and others. By presenting our findings from the Start Up Session at ASEE, we believe we can contribute to the national conversation regarding change in engineering education as it is evidenced in the RED team’s work. 
    more » « less
  2. This NSF funded project currently underway studies strategies to enable robots, multi-robots and teams of multi-robots to model, generate, and cope with misdirection in various situations. This research direction in robotic control offers a novel approach to resilience in and among these teams to these forms of possible disruption. Computational models, drawn particularly from studies of human endeavors and group behaviors, provide a general framework for understanding, producing, and countering misdirection in robotic systems. A framework of computational models will be designed using recursive schema-theoretic models of behaviors at the individual and team levels, building on decentralized methods of control and communication. 
    more » « less
  3. Despite the inherent need for enhancing human-robot interaction (HRI) by non-visually communicating robotic movements and intentions, the application of sonification (the translation of data into audible information) within the field of robotics remains underexplored. This paper investigates the problem of designing sonification algorithms that translate the motion of teams of industrial mobile robots to non-speech sounds. Our proposed solution leverages the wave space sonification (WSS) framework and utilizes localized wave fields with specific orientations within the system configuration space. This WSS-based algorithm generates sounds from the motion data of mobile robots so that the resulting audio exhibits a chosen timbre when the robots pass near designated configurations or move along desired directions. To demonstrate its versatility, the WSS-based sonification algorithm is applied to a team of OMRON LD series autonomous mobile robots, sonifying their motion patterns with pure tonal sounds. 
    more » « less
  4. null (Ed.)
    Abstract Collaborative work often benefits from having teams or organizations with heterogeneous members. In this paper, we present a method to form such diverse teams from people arriving sequentially over time. We define a monotone submodular objective function that combines the diversity and quality of a team and proposes an algorithm to maximize the objective while satisfying multiple constraints. This allows us to balance both how diverse the team is and how well it can perform the task at hand. Using crowd experiments, we show that, in practice, the algorithm leads to large gains in team diversity. Using simulations, we show how to quantify the additional cost of forming diverse teams and how to address the problem of simultaneously maximizing diversity for several attributes (e.g., country of origin and gender). Our method has applications in collaborative work ranging from team formation, the assignment of workers to teams in crowdsourcing, and reviewer allocation to journal papers arriving sequentially. Our code is publicly accessible for further research. 
    more » « less
  5. Hackathons and similar time-bounded events have become a popular form of collaboration in various domains. They are commonly organized as in-person events during which teams engage in intense collaboration over a short period of time to complete a project that is of interest to them. Most research to date has thus consequently focused on studying how teams collaborate in a co-located setting, pointing towards the advantages of radical co-location. The global pandemic of 2020, however, has led to many hackathons moving online, which challenges our current understanding of how they function. In this paper, we address this gap by presenting findings from a multiple-case study of 10 hackathon teams that participated in 4 hackathon events across two continents. By analyzing the collected data, we found that teams merged synchronous and asynchronous means of communication to maintain a common understanding of work progress as well as to maintain awareness of each other's tasks. Task division was self-assigned based on individual skills or interests, while leaders emerged from different strategies (e.g., participant experience, the responsibility of registering the team in an event). Some of the affordances of in-person hackathons, such as the radical co-location of team members, could be partially reproduced in teams that kept open synchronous communication channels while working (i.e., shared audio territories), in a sort of "radical virtual co-location". However, others, such as interactions with other teams, easy access to mentors, and networking with other participants, decreased. In addition, the technical constraints of the different communication tools and platforms brought technical problems and were overwhelming to participants. Our work contributes to understanding the virtual collaboration of small teams in the context of online hackathons and how technologies and event structures proposed by organizers imply this collaboration. 
    more » « less