Recently, deep learning‐based denoising approaches have led to dramatic improvements in low sample‐count Monte Carlo rendering. These approaches are aimed at path tracing, which is not ideal for simulating challenging light transport effects like caustics, where photon mapping is the method of choice. However, photon mapping requires very large numbers of traced photons to achieve high‐quality reconstructions. In this paper, we develop the first deep learning‐based method for particle‐based rendering, and specifically focus on photon density estimation, the core of all particle‐based methods. We train a novel deep neural network to predict a kernel function to aggregate photon contributions at shading points. Our network encodes individual photons into per‐photon features, aggregates them in the neighborhood of a shading point to construct a photon local context vector, and infers a kernel function from the per‐photon and photon local context features. This network is easy to incorporate in many previous photon mapping methods (by simply swapping the kernel density estimator) and can produce high‐quality reconstructions of complex global illumination effects like caustics with an order of magnitude fewer photons compared to previous photon mapping methods. Our approach largely reduces the required number of photons, significantly advancing the computational efficiency in photon mapping.
- Award ID(s):
- 1844538
- PAR ID:
- 10172299
- Date Published:
- Journal Name:
- ACM transactions on graphics
- Volume:
- 39
- Issue:
- 4
- ISSN:
- 0730-0301
- Page Range / eLocation ID:
- 148
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
In recent years, reservoir-based spatiotemporal importance resampling (ReSTIR) algorithms appeared out of nowhere to take parts of the realtime rendering community by storm, with sample reuse speeding direct lighting from millions of dynamic lights [1], diffuse multi-bounce lighting [2], participating media [3], and even complex global illumination paths [4]. Highly optimized variants (e.g. [5]) can give 100x efficiency improvement over traditional ray- and path-tracing methods; this is key to achieve 30 or 60 Hz framerates. In production engines, tracing even one ray or path per pixel may only be feasible on the highest-end systems, so maximizing image quality per sample is vital. ReSTIR builds on the math in Talbot et al.'s [6] resampled importance sampling (RIS), which previously was not widely used or taught, leaving many practitioners missing key intuitions and theoretical grounding. A firm grounding is vital, as seemingly obvious "optimizations" arising during ReSTIR engine integration can silently introduce conditional probabilities and dependencies that, left ignored, add uncontrollable bias to the results. In this course, we plan to: 1. Provide concrete motivation and intuition for why ReSTIR works, where it applies, what assumptions it makes, and the limitations of today's theory and implementations; 2. Gently develop the theory, targeting attendees with basic Monte Carlo sampling experience but without prior knowledge of resampling algorithms (e.g., Talbot et al. [6]); 3. Give explicit algorithmic samples and pseudocode, pointing out easily-encountered pitfalls when implementing ReSTIR; 4. Discuss actual game integrations, highlighting the gotchas, challenges, and corner cases we encountered along the way, and highlighting ReSTIR's practical benefits.more » « less
-
Abstract To increase diversity and realism, surface bidirectional scattering distribution functions (BSDFs) are often modelled as consisting of multiple layers, but accurately evaluating layered BSDFs while accounting for all light transport paths is a challenging problem. Recently, Guo
et al . [GHZ18] proposed an accurate and general position‐free Monte Carlo method, but this method introduces variance that leads to longer render time compared to non‐stochastic layered models. We improve the previous work by presenting two new sampling strategies,pair‐product sampling andmultiple‐product sampling . Our new methods better take advantage of the layered structure and reduce variance compared to the conventional approach of sequentially sampling one BSDF at a time. Ourpair‐product sampling strategy importance samples the product of two BSDFs from a pair of adjacent layers. We further generalize this tomultiple‐product sampling , which importance samples the product of a chain of three or more BSDFs. In order to compute these products, we developed a new approximate Gaussian representation of individual layer BSDFs. This representation incorporates spatially varying material properties as parameters so that our techniques can support an arbitrary number of textured layers. Compared to previous Monte Carlo layering approaches, our results demonstrate substantial variance reduction in rendering isotropic layered surfaces. -
Physics-based differentiable rendering, the estimation of derivatives of ra- diometric measures with respect to arbitrary scene parameters, has a diverse array of applications from solving analysis-by-synthesis problems to train- ing machine learning pipelines incorporating forward rendering processes. Unfortunately, general-purpose differentiable rendering remains challenging due to the lack of efficient estimators as well as the need to identify and handle complex discontinuities such as visibility boundaries. In this paper, we show how path integrals can be differentiated with respect to arbitrary differentiable changes of a scene. We provide a detailed theoretical analysis of this process and establish new differentiable rendering formulations based on the resulting differential path integrals. Our path- space differentiable rendering formulation allows the design of new Monte Carlo estimators that offer significantly better efficiency than state-of-the-art methods in handling complex geometric discontinuities and light transport phenomena such as caustics.more » « less
-
Meila, Marina ; Zhang, Tong (Ed.)Black-box variational inference algorithms use stochastic sampling to analyze diverse statistical models, like those expressed in probabilistic programming languages, without model-specific derivations. While the popular score-function estimator computes unbiased gradient estimates, its variance is often unacceptably large, especially in models with discrete latent variables. We propose a stochastic natural gradient estimator that is as broadly applicable and unbiased, but improves efficiency by exploiting the curvature of the variational bound, and provably reduces variance by marginalizing discrete latent variables. Our marginalized stochastic natural gradients have intriguing connections to classic coordinate ascent variational inference, but allow parallel updates of variational parameters, and provide superior convergence guarantees relative to naive Monte Carlo approximations. We integrate our method with the probabilistic programming language Pyro and evaluate real-world models of documents, images, networks, and crowd-sourcing. Compared to score-function estimators, we require far fewer Monte Carlo samples and consistently convergence orders of magnitude faster.more » « less