Assessing the effects of payments for ecosystem services programs on forest structure and species biodiversity
Globally, biodiversity has declined at an unprecedented rate, challenging the viability of ecosystems, species, and ecological functions and their corresponding services. Payments for ecosystem services (PES) programs have been established and implemented worldwide to combat the degradation or loss of essential ecosystems and ecosystem services with-out sacrificing the well-being of people. With an overarching goal of reducing soil ero-sion, China’s Grain-to-Green program (GTGP) converts cropland to forest or grassland. As one of the largest PES programs in the world, GTGP has great potential to offer biodi-versity conservation co-benefits. To consider how GTGP may influence biodiversity, we measured forest structure and plant and wildlife species diversity at both GTGP forest and natural forest sites in Fangjingshan National Nature Reserve, China. We also evaluated the relationship between canopy cover and biodiversity measures to test whether forest cover, the most commonly measured and reported ecological metric of PES programs, might act as a good proxy for other biodiversity related parameters. We found that forest cover and species diversity increased after GTGP implementation as understory and overstory plant cover, and understory and midstory plant diversity at GTGP sites were similar to natural forest. Our results suggest that GTGP may also have been associated with more »
- Award ID(s):
- 1826839
- Publication Date:
- NSF-PAR ID:
- 10172361
- Journal Name:
- Biodiversity and conservation
- ISSN:
- 0960-3115
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT Introduction: As challenges to biodiversity mount, land-use policies have been implemented to balance human needs and the integrity of ecological systems. One such program, Payments for Ecosystem Services (PES), incentivizes resource users to protect ecosystem services and has been implemented around the world to reduce soil erosion, create or improve wildlife habitats, and improve water quality and other environmental goals. The PES policy, at its core, is a concept that aims to capture the reciprocal relationships between human systems and ecological function and process. As such, PES epistemologically embodies a coupled human and natural systems approach.Outcomes: Yet, despite this conceptual alignment, the on-the-ground implementation or evaluation of PES typically does not adopt this coupled approach and PES programs have little integration between socioeconomic, sociocultural, human demographic, and ecological elements. To advance the evolution of PES, we consider what and how socioeconomic and ecological factors have been incorporated into PES program implementation and evaluation. We also present a conceptual model to articulate how PES research can capture the reciprocal relationships among socioeconomics, demography, and ecology and discuss the quantitative modeling approaches that can support this conceptual development, i.e., structural equation and agent-based modeling, and latent trajectory models.Conclusions: By strengthening the conceptualmore » -
Community forests have been established worldwide to sustainably manage forest ecosystem services while maintaining the livelihoods of local residents. The Chitwan National Park in Nepal is a world-renowned biodiversity hotspot, where community forests were consolidated in the park’s buffer zone after 1993. These western Chitwan community forests stand as the frontiers of human–environment interactions, nurturing endangered large mammal species while providing significant natural resources for local residents. Nevertheless, no systematic forest cover assessment has been conducted for these forests since their establishment. In this study, we examined the green vegetation dynamics of these community forests for the years 1988–2018 using Landsat surface reflectance products. Combining an automatic water extraction index, spectral mixture analysis and the normalized difference fraction index (NDFI), we developed water masks and quantified the water-adjusted green vegetation fractions and NDFI values in the forests. Results showed that all forests have been continuously greening up since their establishment, and the average green vegetation cover of all forests increased from approximately 30% in 1988 to above 70% in 2018. With possible contributions from the invasion of exotic understory plant species, we credit community forestry programs for some of the green-up signals. Monitoring of forest vegetation dynamics is critical formore »
-
null (Ed.)The proposed Biology Integration Institute will bring together two major research institutions in the Upper Midwest—the University of Minnesota (UMN) and University of Wisconsin-Madison (UW)—to investigate the causes and consequences of plant biodiversity across scales in a rapidly changing world —from genes and molecules within cells and tissues to communities, ecosystems, landscapes and the biosphere. The Institute focuses on plant biodiversity, defined broadly to encompass the heterogeneity within life that occurs from the smallest to the largest biological scales. A premise of the Institute is that life is envisioned as occurring at different scales nested within several contrasting conceptions of biological hierarchies, defined by the separate but related fields of physiology, evolutionary biology and ecology. The Institute will emphasize the use of ‘spectral biology’—detection of biological properties based on the interaction of light energy with matter—and process-oriented predictive models to investigate the processes by which biological components at one scale give rise to emergent properties at higher scales. Through an iterative process that harnesses cutting edge technologies to observe a suite of carefully designed empirical systems—including the National Ecological Observatory Network (NEON) and some of the world’s longest running and state-of-the-art global change experiments—the Institute will advance biological understanding andmore »
-
Increasing wildfires in western North American conifer forests have led to debates surrounding the application of post-fire management practices. There is a lack of consensus on whether (and to what extent) post-fire management assists or hinders managers in achieving goals, particularly in under-studied regions like eastern ponderosa pine forests. This makes it difficult for forest managers to balance among competing interests. We contrast structural and community characteristics across unburned ponderosa pine forest, severely burned ponderosa pine forest, and severely burned ponderosa pine forest treated with post-fire management with respect to three management objectives: ponderosa pine regeneration, wildland fuels control, and habitat conservation. Ponderosa pine saplings were more abundant in treated burned sites than untreated burned sites, suggesting increases in tree regeneration following tree planting; however, natural regeneration was evident in both unburned and untreated burned sites. Wildland fuels management greatly reduced snags and coarse woody debris in treated burned sites. Understory cover measurements revealed bare ground and fine woody debris were more strongly associated with untreated burned sites, and greater levels of forbs and grass were more strongly associated with treated burned sites. Wildlife habitat was greatly reduced following post-fire treatments. There were no tree cavities in treated burned sites,more »
-
Advancing extensive cattle production is a major threat to biodiversity conservation in Amazonia. The dominant vegetation cover has a drastic impact on soil microbial communities, affecting their composition, structure, and ecological services. Herein, we explored relationships between land-use, soil types, and forest floor compartments on the prokaryotic metacommunity structuring in Western Amazonia. Soil samples were taken in sites under high anthropogenic pressure and distributed along a ±800 km gradient. Additionally, the litter and a root layer, characteristic of the forest environment, were sampled. DNA was extracted, and metacommunity composition and structure were assessed through 16S rRNA gene sequencing. Prokaryotic metacommunities in the bulk soil were strongly affected by pH, base and aluminum saturation, Ca + Mg concentration, the sum of bases, and silt percentage, due to land-use management and natural differences among the soil types. Higher alpha, beta, and gamma diversities were observed in sites with higher soil pH and fertility, such as pasture soils or fertile soils of the state of Acre. When taking litter and root layer communities into account, the beta diversity was significantly higher in the forest floor than in pasture bulk soil for all study regions. Our results show that the forest floor’s prokaryotic metacommunitymore »