We find a zero in the positronium formation scattering amplitude and a deep minimum in the logarithm of the corresponding differential cross section for positron–helium collisions for an energy just above the positronium formation threshold. Corresponding to the zero, there is a vortex in the extended velocity field that is associated with this amplitude when one treats both the magnitude of the momentum of the incident positron and the angle of the scattered positronium as independent variables. Using the complex Kohn variational method, we determine accurately two-channel K-matrices for positron–helium collisions in the Ore gap. We fit these K-matrices using both polynomials and the Watanabe and Greene’s multichannel effective range theory taking into account explicitly the polarization potential in the Ps-He+ channel. Using the fitted K-matrices we determine the extended velocity field and show that it rotates anticlockwise around the zero in the positronium formation scattering amplitude. We find that there is a valley in the logarithm of the positronium formation differential cross section that includes the deep minimum and also a minimum in the forward direction.
more »
« less
Deep Minima in the Triply Differential Cross Section for Ionization of Atomic Hydrogen by Electron and Positron Impact
We investigate ionization of atomic hydrogen by electron- and positron-impact. We apply the Coulomb–Born (CB1) approximation, various modified CB1 approximations, the three body distorted wave (3DW) approximation, and the time-dependent close-coupling (TDCC) method to electron-impact ionization of hydrogen. For electron-impact ionization of hydrogen for an incident energy of approximately 76.45 eV, we obtain a deep minimum in the CB1 triply differential cross section (TDCS). However, the TDCC for 74.45 eV and the 3DW for 74.46 eV gave a dip in the TDCS. For positron-hydrogen ionization (breakup) we apply the CB1 approximation and a modified CB1 approximation. We obtain a deep minimum in the TDCS and a zero in the CB1 transition matrix element for an incident energy of 100 eV with a gun angle of 56.13 ° . Corresponding to a zero in the CB1 transition matrix element, there is a vortex in the velocity field associated with this element. For both electron- and positron-impact ionization of hydrogen the velocity field rotates in the same direction, which is anticlockwise. All calculations are performed for a doubly symmetric geometry; the electron-impact ionization is in-plane and the positron-impact ionization is out-of-plane.
more »
« less
- Award ID(s):
- 1707792
- PAR ID:
- 10172436
- Date Published:
- Journal Name:
- Atoms
- Volume:
- 8
- Issue:
- 2
- ISSN:
- 2218-2004
- Page Range / eLocation ID:
- 26
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We investigate the quantum dynamics of target excitation and positronium formation in the positron-hydrogen atom scattering without and with an external assisting laser field within a reduced-dimensional quantum model. Strong interference fringes between the incident and reflected positron wave packets are observed in the reaction region. We further investigate the critical behavior of transition probabilities near the channel-opening thresholds for hydrogen excitation and positronium formation and find a strong competition between channels with similar threshold energies, but different parities. The transmission ratios of the incident positron in different reaction channels are calculated, and it is shown that only positronium formation in the ground state prefers forward scattering. Our simulation of the positron-hydrogen scattering with an assisting laser field indicates that the three-particle bound states can be formed during the collisions due to the photon emission induced by the external laser field.more » « less
-
The confined variational method is used to study the elastic scattering of the positron from the ground-state helium with the scattering energy in the range from 0.05 eV to 11.02 eV. Describing the correlation effect with explicitly correlated Gaussians, we obtain accurate phase shifts, S-wave scattering length, elastic scattering cross sections, and annihilation parameters for different incident momenta. Specifically, by a least-squares fit of the data to the effective-range theory, we determine the room temperature annihilation parameter Zeff = 3.955, which is in perfect agreement with the measured result of 3.94 ± 0.02 [J. Phys. B 8, 1734 (1975)].more » « less
-
By decomposing the initial state wave function into its unique natural orbital expansion we analyze the role of electron correlation in the initial state of an atom or molecule in determining the angular distribution of one-photon double ionization (OPDI). Numerically accurate calculations on the OPDI of He, H− and H2 were considered. For the atomic systems the triply differential cross section (TDCS) was relative insensitively to initial state correlation. However, for oriented H2 the TDCS was particularly sensitive to left-right initial state correlation along the bond.more » « less
-
The Flow matrix is a novel method to describe and extrapolate transitions among categories. The Flow matrix extrapolates a constant transition size per unit of time on a time continuum with a maximum of one incident per observation during the extrapolation. The Flow matrix extrapolates linearly until the persistence of a category shrinks to zero. The Flow matrix has concepts and mathematics that are more straightforward than the Markov matrix. However, many scientists apply the Markov matrix by default because popular software packages offer no alternative to the Markov matrix, despite the conceptual and mathematical challenges that the Markov matrix poses. The Markov matrix extrapolates a constant transition proportion per time interval during whole-number multiples of the duration of the calibration time interval. The Markov extrapolation allows at most one incident per observation during each time interval but allows repeated incidents per observation through sequential time intervals. Many Markov extrapolations approach a steady state asymptotically through time as each category size approaches a constant. We use case studies concerning land change to illustrate the characteristics of the Flow and Markov matrices. The Flow and Markov extrapolations both deviate from the reference data during a validation time interval, implying there is no reason to prefer one matrix to the other in terms of correspondence with the processes that we analyzed. The two matrices differ substantially in terms of their underlying concepts and mathematical behaviors. Scientists should consider the ease of use and interpretation for each matrix when extrapolating transitions among categories.more » « less
An official website of the United States government

