Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We find a zero in the positronium formation scattering amplitude and a deep minimum in the logarithm of the corresponding differential cross section for positron–helium collisions for an energy just above the positronium formation threshold. Corresponding to the zero, there is a vortex in the extended velocity field that is associated with this amplitude when one treats both the magnitude of the momentum of the incident positron and the angle of the scattered positronium as independent variables. Using the complex Kohn variational method, we determine accurately two-channel K-matrices for positron–helium collisions in the Ore gap. We fit these K-matrices using both polynomials and the Watanabe and Greene’s multichannel effective range theory taking into account explicitly the polarization potential in the Ps-He+ channel. Using the fitted K-matrices we determine the extended velocity field and show that it rotates anticlockwise around the zero in the positronium formation scattering amplitude. We find that there is a valley in the logarithm of the positronium formation differential cross section that includes the deep minimum and also a minimum in the forward direction.more » « less
-
We investigate ionization of atomic hydrogen by electron- and positron-impact. We apply the Coulomb–Born (CB1) approximation, various modified CB1 approximations, the three body distorted wave (3DW) approximation, and the time-dependent close-coupling (TDCC) method to electron-impact ionization of hydrogen. For electron-impact ionization of hydrogen for an incident energy of approximately 76.45 eV, we obtain a deep minimum in the CB1 triply differential cross section (TDCS). However, the TDCC for 74.45 eV and the 3DW for 74.46 eV gave a dip in the TDCS. For positron-hydrogen ionization (breakup) we apply the CB1 approximation and a modified CB1 approximation. We obtain a deep minimum in the TDCS and a zero in the CB1 transition matrix element for an incident energy of 100 eV with a gun angle of 56.13 ° . Corresponding to a zero in the CB1 transition matrix element, there is a vortex in the velocity field associated with this element. For both electron- and positron-impact ionization of hydrogen the velocity field rotates in the same direction, which is anticlockwise. All calculations are performed for a doubly symmetric geometry; the electron-impact ionization is in-plane and the positron-impact ionization is out-of-plane.more » « less
An official website of the United States government
