skip to main content


Title: A Mechanism for the Midwinter Minimum in North Pacific Storm‐Track Intensity From a Global Perspective
Abstract

The midwinter minimum in North Pacific storm‐track intensity is a perplexing phenomenon because the associatedlocalbaroclinity in the North Pacific is maximum during midwinter. Here, a new mechanism is proposed wherein the midwinter minimum occurs in part because global planetary‐scale waves consume the zonal available potential energy, limiting its availability for storm‐track eddy growth. During strong midwinter suppression years, the midwinter minimum is preceded by anomalously large planetary‐scale eddy kinetic energy and subsequent reduction in zonal available potential energy andglobalbaroclinity. Consistent with previous studies, this large planetary‐scale eddy kinetic energy takes place after enhanced Pacific warm pool convection, which peaks during winter. These results indicate that the midwinter minimum is in part caused by heightened warm pool convection, which, through excitation of planetary‐scale waves, leads to a weaker storm‐track. This finding also helps explain the existence of the midwinter North Atlantic storm‐track minimum.

 
more » « less
Award ID(s):
1822015
NSF-PAR ID:
10455367
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
47
Issue:
5
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The midwinter suppression of eddy activity in the North Pacific storm track is a phenomenon that has resisted reproduction in idealized models that are initialized independently of the observed atmosphere. Attempts at explaining it have often focused on local mechanisms that depend on zonal asymmetries, such as effects of topography on the mean flow and eddies. Here an idealized aquaplanet GCM is used to demonstrate that a midwinter suppression can also occur in the activity of a statistically zonally symmetric storm track. For a midwinter suppression to occur, it is necessary that parameters, such as the thermal inertia of the upper ocean and the strength of tropical ocean energy transport, are chosen suitably to produce a pronounced seasonal cycle of the subtropical jet characteristics. If the subtropical jet is sufficiently strong and located close to the midlatitude storm track during midwinter, it dominates the upper-level flow and guides eddies equatorward, away from the low-level area of eddy generation. This inhibits the baroclinic interaction between upper and lower levels within the storm track and weakens eddy activity. However, as the subtropical jet continues to move poleward during late winter in the idealized GCM (and unlike what is observed), eddy activity picks up again, showing that the properties of the subtropical jet that give rise to the midwinter suppression are subtle. The idealized GCM simulations provide a framework within which possible mechanisms giving rise to a midwinter suppression of storm tracks can be investigated systematically. 
    more » « less
  2. null (Ed.)
    Abstract Baroclinic waves drive both regional variations in weather and large-scale variability in the extratropical general circulation. They generally do not exist in isolation, but rather often form into coherent wave packets that propagate to the east via a mechanism called downstream development. Downstream development has been widely documented and explored. Here we document a novel but also key aspect of baroclinic waves: the downstream suppression of baroclinic activity that occurs in the wake of eastward propagating disturbances. Downstream suppression is apparent not only in the Southern Hemisphere storm track as shown in previous work, but also in the North Pacific and North Atlantic storm tracks. It plays an essential role in driving subseasonal periodicity in extratropical eddy activity in both hemispheres, and gives rise to the observed quiescence of the North Atlantic storm track 1–2 weeks following pronounced eddy activity in the North Pacific sector. It is argued that downstream suppression results from the anomalously low baroclinicity that arises as eastward propagating wave packets convert potential to kinetic energy. In contrast to baroclinic wave packets, which propagate to the east at roughly the group velocity in the upper troposphere, the suppression of baroclinic activity propagates eastward at a slower rate that is comparable to that of the lower to midtropospheric flow. The results have implications for understanding subseasonal variability in the extratropical troposphere of both hemispheres. 
    more » « less
  3. Mediterranean-type climates are defined by temperate, wet winters, and hot or warm dry summers and exist at the western edges of five continents in locations determined by the geography of winter storm tracks and summer subtropical anticyclones. The climatology, variability, and long-term changes in winter precipitation in Mediterranean-type climates, and the mechanisms for model-projected near-term future change, are analyzed. Despite commonalities in terms of location in the context of planetary-scale dynamics, the causes of variability are distinct across the regions. Internal atmospheric variability is the dominant source of winter precipitation variability in all Mediterranean-type climate regions, but only in the Mediterranean is this clearly related to annular mode variability. Ocean forcing of variability is a notable influence only for California and Chile. As a consequence, potential predictability of winter precipitation variability in the regions is low. In all regions, the trend in winter precipitation since 1901 is similar to that which arises as a response to changes in external forcing in the models participating in phase 5 of the Coupled Model Intercomparison Project. All Mediterranean-type climate regions, except in North America, have dried and the models project further drying over coming decades. In the Northern Hemisphere, dynamical processes are responsible: development of a winter ridge over the Mediterranean that suppresses precipitation and of a trough west of the North American west coast that shifts the Pacific storm track equatorward. In the Southern Hemisphere, mixed dynamic–thermodynamic changes are important that place a minimum in vertically integrated water vapor change at the coast and enhance zonal dry advection into Mediterranean-type climate regions inland.

     
    more » « less
  4. This paper reports preliminary yet encouraging findings on the use of causal discovery methods to understand the interaction between atmospheric planetary- and synoptic-scale disturbances in the Northern Hemisphere. Specifically, constraint-based structure learning of probabilistic graphical models is applied to the spherical harmonics decomposition of the daily 500-hPa geopotential height field in boreal winter for the period 1948–2015. Active causal pathways among different spherical harmonics components are identified and documented in the form of a temporal probabilistic graphical model. Since, by definition, the structure learning algorithm used here only robustly identifies linear causal effects, we report only causal pathways between two groups of disturbances with sufficiently large differences in temporal and/or spatial scales, that is, planetary-scale (mainly zonal wavenumbers 1–3) and synoptic-scale disturbances (mainly zonal wavenumbers 6–8). Daily reconstruction of geopotential heights using only interacting scales suggest that the modulation of synoptic-scale disturbances by planetary-scale disturbances is best characterized by the flow of information from a zonal wavenumber-1 disturbance to a synoptic-scale circumglobal wave train whose amplitude peaks at the North Pacific and North Atlantic storm-track region. The feedback of synoptic-scale to planetary-scale disturbances manifests itself as a zonal wavenumber-2 structure driven by synoptic-eddy momentum fluxes. This wavenumber-2 structure locally enhances the East Asian trough and western Europe ridge of the wavenumber-1 planetary-scale disturbance that actively modulates the activity of synoptic-scale disturbances. The winter-mean amplitude of the actively interacting disturbances are characterized by pronounced fluctuations across interannual to decadal time scales.

     
    more » « less
  5. Abstract

    According to baroclinic adjustment theory, the isentropic slope maintains its marginal state for baroclinic instability. However, the recent trend of Arctic warming raises the possibility that there could have been a systematic change in the extratropical isentropic slope. In this study, global reanalysis data are used to investigate this possibility. The result shows that tropospheric isentropes north of 50°N have been flattening significantly during winter for the recent 25 years. This trend pattern fluctuates at intraseasonal time scales. An examination of the temporal evolution indicates that it is the planetary-scale (zonal wavenumbers-1–3) eddy heat fluxes, not the synoptic-scale eddy heat fluxes, that flatten the isentropes; synoptic-scale eddy heat fluxes instead respond to the subsequent changes in isentropic slope. This extratropical planetary-scale wave growth is preceded by an enhanced zonal asymmetry of tropical heating and poleward wave activity vectors. A numerical model is used to test if the observed latent heating can generate the observed isentropic slope anomalies. The result shows that the tropical heating indeed contributes to the isentropic slope trend. The agreement between the model solution and the observation improves substantially if extratropical latent heating is also included in the forcing. The model temperature response shows a pattern resembling the warm-Arctic–cold-continent pattern. From these results, it is concluded that the recent flattening trend of isentropic slope north of 50°N is mostly caused by planetary-scale eddy activities generated from latent heating, and that this change is accompanied by a warm-Arctic–cold-continent pattern that permeates the entire troposphere.

     
    more » « less