Inorganic materials with short radiative decay time are highly desirable for fast optical sensors. This paper reports fast photoluminescence (PL) from a series of barium hexafluorosilicate (BaSiF 6 ) superlong nanowires with high aspect ratios, codoped with Ce 3+ /Tb 3+ /Eu 3+ ions, with a subnanosecond decay time. Solvothermally synthesized BaSiF 6 nanowires exhibit a uniform morphology, with an average diameter less than 40 nm and aspect ratios of over several hundreds, grown in the c -axis direction with {110} surfaces. The PL emission from the codoped BaSiF 6 nanowires, when excited by a 254 nm source, is dependent on Tb 3+ concentration, and the energy transfer from Ce 3+ to Tb 3+ and to Eu 3+ ions allows efficient emissions in the visible spectra when excited by a near UV source. Annealing BaSiF 6 nanowires at 600 °C in a vacuum produced barium fluoride (BaF 2 ) nanowires composed of nanocrystals. Both BaSiF 6 and BaF 2 nanowires exhibit fast emissions in the visible spectra, with enhanced intensities compared with their codoped microparticle counterparts. The decay time of codoped BaSiF 6 nanowires is found to be shorter than that of codoped BaF 2 nanowires. The energy transfer is also observed in their cathodoluminescence spectra with high-energy irradiation.
more »
« less
Luminescence characteristics of rare-earth-doped barium hexafluorogermanate BaGeF 6 nanowires: fast subnanosecond decay time and high sensitivity in H 2 O 2 detection
Fluorides are promising host materials for optical applications. This paper reports the photoluminescent (PL) and cathodoluminescent (CL) characteristics of barium hexafluorogermanate BaGeF 6 nanowires codoped with Ce 3+ , Tb 3+ and Sm 3+ rare earth ions, produced by a solvothermal route. The synthesized BaGeF 6 nanowires exhibit uniform morphology and size distribution. X-ray diffraction divulges the one-dimensional growth of crystalline BaGeF 6 structure, with the absence of any impurity phases. Visible luminescence is recorded from the nanowires in green and red regions, when the nanowires are codoped with Ce 3+ /Tb 3+ , and Ce 3+ /Tb 3+ /Sm 3+ , respectively, under a UV excitation source. The PL emission from the codoped BaGeF 6 nanowires, when excited by a 254 nm source, originates from the efficient energy transfer bridges between Ce 3+ , Tb 3+ and Sm 3+ ions. The decay time of the visible luminescent emission from the nanowires is in the order of subnanoseconds, being one of the shortest decay time records from inorganic scintillators. The CL emission from the BaGeF 6 nanowires in the tunable visible range reveals their potential use for the detection of high-energy radiation. The PL emissions are sensitive to H 2 O 2 at low concentrations, enabling their high-sensitivity detection of H 2 O 2 using BaGeF 6 nanowires. A comparison with BaSiF 6 nanowires is made in terms of decay time and its sensitivity towards H 2 O 2 .
more »
« less
- Award ID(s):
- 1436120
- PAR ID:
- 10172648
- Date Published:
- Journal Name:
- RSC Advances
- Volume:
- 8
- Issue:
- 69
- ISSN:
- 2046-2069
- Page Range / eLocation ID:
- 39296 to 39306
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Development of new host materials containing heavy elements for radiation detection is highly desirable. In this work, dibarium octafluorohafnate, Ba 2 HfF 8 , doped with rare-earth ions, was synthesized as cube-shaped nanocrystals via a facile hydrothermal method. The host lattice contains two Ba 2+ crystallographic sites, and dopants on these sites exhibit site-dependent photoluminescence (PL), cathodoluminescence (CL) and X-ray excited radioluminescence (RL) characteristics. Single doping contents were optimized as 25 mol% Tb 3+ and 5 mol% Eu 3+ . In Ba 2 HfF 8 :Tb 3+ –Eu 3+ codoped nanocrystals, preferrable occupation of Eu 3+ and Tb 3+ at two different Ba 2+ sites in the host lattice was observed. The nanocubes exhibited enhanced emissions over micron sized particles. In PL, the presence of Tb 3+ ions significantly enhanced the emission intensity of Eu 3+ ions due to energy transfer from the Tb 3+ to Eu 3+ ions, while under high-energy irradiation in CL or RL, Tb 3+ emission was intensified. X-ray induced RL with afterglow in seconds was observed. It was found that the codoped sample showed higher sensitivity than the singly doped sample, indicating that codoping is an effective strategy to develop a scintillator with this host structure for high-energy radiation detection.more » « less
-
Abstract Compared to halides Cs2HfX6(X = Cl, Br, I) with a vacancy‐ordered cubic double perovskite structure, the halide Cs2HfF6(CHF), with a hexagonal Bravais lattice, possesses a higher mass density and chemical stability for radiation detection. Luminescence properties and energy transfer mechanisms of rare‐earths‐doped CHF materials are studied here. The structure of CHF is identified as a new type of vacancy‐ordered hexagonal perovskite, with the same type of building blocks of the double perovskite but stacked with single layers. Density‐functional theory calculations reveal a large bandgap of CHF. A broad emission is observed from the pristine CHF host, which is suggested to be associated with self‐trapped excitons (STEs). A series of rare‐earths‐doped materials are designed utilizing the STE emissions, and efficient energy transfers from STEs and Tb3+to Eu3+are achieved for tunable emissions. The codoped material shows stable emission under X‐ray irradiation, with 10.2% reduction from its initial emission intensity, associated with possible structural evolution by radiation‐induced deformation of the soft host. The radiation responses of singly and codoped materials are evaluated, and the codoped material is found to be more sensitive to the radiation energy than the singly doped or pristine CHF for radiation detection.more » « less
-
Two new Ce IV /O 2− clusters, (pyH) 8 [Ce 10 O 4 (OH) 4 (O 3 PPh) 12 (NO 3 ) 12 ] (1) and [Ce 6 O 4 (OH) 4 (O 2 PPh 2 ) 4 (O 2 C t Bu) 8 ] (2), have been prepared that contain P-based ligands for the first time. They were obtained from the reaction of (NH 4 ) 2 [Ce(NO 3 ) 6 ], PhPO 3 H 2 or Ph 2 PO 2 H, and t BuCO 2 H in a 2 : 1 : 2 molar ratio in pyridine/MeOH (10 : 1 mL). Both compounds contain a {Ce 6 O 4 (OH) 4 } face-capped octahedral core, with 1 containing an additional four Ce IV on the outside to give a supertetrahedral Ce 10 topology; the {Ce 6 O 8 } unit is the smallest recognizable fragment of the fluorite structure of CeO 2 . The HO˙ radical scavenging activities of 1 and 2 were measured by UV/vis spectral monitoring of methylene blue oxidation by HO˙ radicals in the presence and absence of the Ce/O clusters, and the results compared with those for larger Ce 24 and Ce 38 molecular nanoparticles of CeO 2 prepared in previous work. 1 and 2 are both very poor HO˙ radical scavengers compared with Ce 24 and Ce 38 , a result that is consistent with reports in the literature that PO 4 3− ions inhibit the radical scavenging ability of traditional CeO 2 nanoparticles and putatively assigned to PO 4 3− binding to the surface.more » « less
-
The reduction potentials (reported vs. Fc + /Fc) for a series of Cp′ 3 Ln complexes (Cp′ = C 5 H 4 SiMe 3 , Ln = lanthanide) were determined via electrochemistry in THF with [ n Bu 4 N][BPh 4 ] as the supporting electrolyte. The Ln( iii )/Ln( ii ) reduction potentials for Ln = Eu, Yb, Sm, and Tm (−1.07 to −2.83 V) follow the expected trend for stability of 4f 7 , 4f 14 , 4f 6 , and 4f 13 Ln( ii ) ions, respectively. The reduction potentials for Ln = Pr, Nd, Gd, Tb, Dy, Ho, Er, and Lu, that form 4f n 5d 1 Ln( ii ) ions ( n = 2–14), fall in a narrow range of −2.95 V to −3.14 V. Only cathodic events were observed for La and Ce at −3.36 V and −3.43 V, respectively. The reduction potentials of the Ln( ii ) compounds [K(2.2.2-cryptand)][Cp′ 3 Ln] (Ln = Pr, Sm, Eu) match those of the Cp′ 3 Ln complexes. The reduction potentials of nine (C 5 Me 4 H) 3 Ln complexes were also studied and found to be 0.05–0.24 V more negative than those of the Cp′ 3 Ln compounds.more » « less