skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 AM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: Understanding and securing device vulnerabilities through automated bug report analysis
Recent years have witnessed the rise of Internet-of-Things (IoT) based cyber attacks. These attacks, as expected, are launched from compromised IoT devices by exploiting security flaws already known. Less clear, however, are the fundamental causes of the pervasiveness of IoT device vulnerabilities and their security implications, particularly in how they affect ongoing cybercrimes. To better understand the problems and seek effective means to suppress the wave of IoT-based attacks, we conduct a comprehensive study based on a large number of real-world attack traces collected from our honeypots, attack tools purchased from the underground, and information collected from high-profile IoT attacks. This study sheds new light on the device vulnerabilities of today's IoT systems and their security implications: ongoing cyber attacks heavily rely on these known vulnerabilities and the attack code released through their reports; on the other hand, such a reliance on known vulnerabilities can actually be used against adversaries. The same bug reports that enable the development of an attack at an exceedingly low cost can also be leveraged to extract vulnerability-specific features that help stop the attack. In particular, we leverage Natural Language Processing (NLP) to automatically collect and analyze more than 7,500 security reports (with 12,286 security critical IoT flaws in total) scattered across bug-reporting blogs, forums, and mailing lists on the Internet. We show that signatures can be automatically generated through an NLP-based report analysis, and be used by intrusion detection or firewall systems to effectively mitigate the threats from today's IoT-based attacks.  more » « less
Award ID(s):
1801432
PAR ID:
10172758
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
SEC'19: Proceedings of the 28th USENIX Conference on Security Symposium
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent years have witnessed the rise of Internet-of-Things (IoT) based cyber attacks. These attacks, as expected, are launched from compromised IoT devices by exploiting security flaws already known. Less clear, however, are the fundamental causes of the pervasiveness of IoT device vulnerabilities and their security implications, particularly in how they affect ongoing cybercrimes. To better understand the problems and seek effective means to suppress the wave of IoT-based attacks, we conduct a comprehensive study based on a large number of real-world attack traces collected from our honeypots, attack tools purchased from the underground, and information collected from high-profile IoT attacks. This study sheds new light on the device vulnerabilities of today’s IoT systems and their security implications: ongoing cyber attacks heavily rely on these known vulnerabilities and the attack code released through their reports; on the other hand, such a reliance on known vulnerabilities can actually be used against adversaries. The same bug reports that enable the development of an attack at an exceedingly low cost can also be leveraged to extract vulnerability-specific features that help stop the attack. In particular, we leverage Natural Language Processing (NLP) to automatically collect and analyze more than 7,500 security reports (with 12,286 security critical IoT flaws in total) scattered across bug-reporting blogs, forums, and mailing lists on the Internet. We show that signatures can be automatically generated through an NLP-based report analysis, and be used by intrusion detection or firewall systems to effectively mitigate the threats from today’s IoT-based attacks. 
    more » « less
  2. null (Ed.)
    The implementation of Internet of Things (IoT) devices in medical environments, has introduced a growing list of security vulnerabilities and threats. The lack of an extensible big data resource that captures medical device vulnerabilities limits the use of Artificial Intelligence (AI) based cyber defense systems in capturing, detecting, and preventing known and future attacks. We describe a system that generates a repository of Cyber Threat Intelligence (CTI) about various medical devices and their known vulnerabilities from sources such as manufacturer and ICS-CERT vulnerability alerts. We augment the intelligence repository with data sources such as Wikidata and public medical databases. The combined resources are integrated with threat intelligence in our Cybersecurity Knowledge Graph (CKG) from previous research. The augmented graph embeddings are useful in querying relevant information and can help in various AI assisted cybersecurity tasks. Given the integration of multiple resources, we found the augmented CKG produced higher quality graph representations. The augmented CKG produced a 31% increase in the Mean Average Precision (MAP) value, computed over an information retrieval task. 
    more » « less
  3. Apple Wireless Direct Link (AWDL) is a key protocol in Apple’s ecosystem used by over one billion iOS and macOS devices for device-to-device communications. AWDL is a proprietary extension of the IEEE 802.11 (Wi-Fi) standard and integrates with Bluetooth Low Energy (BLE) for providing services such as Apple AirDrop. We conduct the first security and privacy analysis of AWDL and its integration with BLE. We uncover several security and privacy vulnerabilities ranging from design flaws to implementation bugs leading to a man-in-the-middle (MitM) attack enabling stealthy modification of files transmitted via AirDrop, denial-of-service (DoS) attacks preventing communication, privacy leaks that enable user identification and long-term tracking undermining MAC address randomization, and DoS attacks enabling targeted or simultaneous crashing of all neighboring devices. The flaws span across AirDrop’s BLE discovery mechanism, AWDL synchronization, UI design, and Wi-Fi driver implementation. Our analysis is based on a combination of reverse engineering of protocols and code supported by analyzing patents. We provide proof-of-concept implementations and demonstrate that the attacks can be mounted using a low-cost ($20) micro:bit device and an off-the-shelf Wi-Fi card. We propose practical and effective countermeasures. While Apple was able to issue a fix for a DoS attack vulnerability after our responsible disclosure, the other security and privacy vulnerabilities require the redesign of some of their services. 
    more » « less
  4. null (Ed.)
    Internet of Things (IoT) devices have been increasingly integrated into our daily life. However, such smart devices suffer a broad attack surface. Particularly, attacks targeting the device software at runtime are challenging to defend against if IoT devices use resource-constrained microcontrollers (MCUs). TrustZone-M, a TrustZone extension for MCUs, is an emerging security technique fortifying MCU based IoT devices. This paper presents the first security analysis of potential software security issues in TrustZone-M enabled MCUs. We explore the stack-based buffer overflow (BOF) attack for code injection, return-oriented programming (ROP) attack, heap-based BOF attack, format string attack, and attacks against Non-secure Callable (NSC) functions in the context of TrustZone-M. We validate these attacks using the Microchip SAM L11 MCU, which uses the ARM Cortex-M23 processor with the TrustZone-M technology. Strategies to mitigate these software attacks are also discussed. 
    more » « less
  5. null (Ed.)
    Cyber-threats are continually evolving and growing in numbers and extreme complexities with the increasing connectivity of the Internet of Things (IoT). Existing cyber-defense tools seem not to deter the number of successful cyber-attacks reported worldwide. If defense tools are not seldom, why does the cyber-chase trend favor bad actors? Although cyber-defense tools monitor and try to diffuse intrusion attempts, research shows the required agility speed against evolving threats is way too slow. One of the reasons is that many intrusion detection tools focus on anomaly alerts’ accuracy, assuming that pre-observed attacks and subsequent security patches are adequate. Well, that is not the case. In fact, there is a need for techniques that go beyond intrusion accuracy against specific vulnerabilities to the prediction of cyber-defense performance for improved proactivity. This paper proposes a combination of cyber-attack projection and cyber-defense agility estimation to dynamically but reliably augur intrusion detection performance. Since cyber-security is buffeted with many unknown parameters and rapidly changing trends, we apply a machine learning (ML) based hidden markov model (HMM) to predict intrusion detection agility. HMM is best known for robust prediction of temporal relationships mid noise and training brevity corroborating our high prediction accuracy on three major open-source network intrusion detection systems, namely Zeek, OSSEC, and Suricata. Specifically, we present a novel approach for combined projection, prediction, and cyber-visualization to enable precise agility analysis of cyber defense. We also evaluate the performance of the developed approach using numerical results. 
    more » « less