skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hidden Markov Model Enabled Prediction and Visualization of Cyber Agility in IoT era
Cyber-threats are continually evolving and growing in numbers and extreme complexities with the increasing connectivity of the Internet of Things (IoT). Existing cyber-defense tools seem not to deter the number of successful cyber-attacks reported worldwide. If defense tools are not seldom, why does the cyber-chase trend favor bad actors? Although cyber-defense tools monitor and try to diffuse intrusion attempts, research shows the required agility speed against evolving threats is way too slow. One of the reasons is that many intrusion detection tools focus on anomaly alerts’ accuracy, assuming that pre-observed attacks and subsequent security patches are adequate. Well, that is not the case. In fact, there is a need for techniques that go beyond intrusion accuracy against specific vulnerabilities to the prediction of cyber-defense performance for improved proactivity. This paper proposes a combination of cyber-attack projection and cyber-defense agility estimation to dynamically but reliably augur intrusion detection performance. Since cyber-security is buffeted with many unknown parameters and rapidly changing trends, we apply a machine learning (ML) based hidden markov model (HMM) to predict intrusion detection agility. HMM is best known for robust prediction of temporal relationships mid noise and training brevity corroborating our high prediction accuracy on three major open-source network intrusion detection systems, namely Zeek, OSSEC, and Suricata. Specifically, we present a novel approach for combined projection, prediction, and cyber-visualization to enable precise agility analysis of cyber defense. We also evaluate the performance of the developed approach using numerical results.  more » « less
Award ID(s):
1828811 2036359 2039583
PAR ID:
10250664
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE Internet of Things Journal
ISSN:
2372-2541
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Machine learning-based security detection models have become prevalent in modern malware and intrusion detection systems. However, previous studies show that such models are susceptible to adversarial evasion attacks. In this type of attack, inputs (i.e., adversarial examples) are specially crafted by intelligent malicious adversaries, with the aim of being misclassified by existing state-of-the-art models (e.g., deep neural networks). Once the attackers can fool a classifier to think that a malicious input is actually benign, they can render a machine learning-based malware or intrusion detection system ineffective. Objective To help security practitioners and researchers build a more robust model against non-adaptive, white-box and non-targeted adversarial evasion attacks through the idea of ensemble model. Method We propose an approach called Omni, the main idea of which is to explore methods that create an ensemble of “unexpected models”; i.e., models whose control hyperparameters have a large distance to the hyperparameters of an adversary’s target model, with which we then make an optimized weighted ensemble prediction. Results In studies with five types of adversarial evasion attacks (FGSM, BIM, JSMA, DeepFool and Carlini-Wagner) on five security datasets (NSL-KDD, CIC-IDS-2017, CSE-CIC-IDS2018, CICAndMal2017 and the Contagio PDF dataset), we show Omni is a promising approach as a defense strategy against adversarial attacks when compared with other baseline treatments Conclusions When employing ensemble defense against adversarial evasion attacks, we suggest to create ensemble with unexpected models that are distant from the attacker’s expected model (i.e., target model) through methods such as hyperparameter optimization. 
    more » « less
  2. In recent years, web-based platforms and business applications have been rising in popularity deeming themselves indispensable as they constitute the main backbone of business processes and in- formation sharing. However, the unprecedented increased number of cyber-attacks have been threatening their day-to-day opera- tions. In particular, the Standard Query Language Injection Attack (SQLIA) remains one of the most prevalent cyber attacks targeting web-based applications. As a consequence, the SQLIA detection techniques need to be constantly revamped and stay up-to-date in order to achieve the full potential of mitigating such threats. In this paper, we propose an artificial intelligence model based on super- vised machine learning techniques to detect SQLIA. As part of the proposed model, we introduce an input string validation technique as a primary anomaly identifier using pattern matching for SQL Query data with anomalies-injections. To evaluate our approach we injected one type of SQLIA that is tautology attacks and measured the performance of our model. We used three main classifiers in our model and our findings indicate a model prediction accuracy of 98.3605% for Support Vector Machine (SVM), 96.296% for K-Nearest Neighbors (KNN), and 97.530% for Random Forest. The approach proposed in this paper has the potential of being used to integrate an automated SQL Injection detection mechanism with Intrusion Detection Systems (IDS) and Intrusion Protection Systems (IPS). 
    more » « less
  3. This research serves as a broad examination of the different threats and attacks against the IoT architecture. This research analyzes the different layers of the IoT architecture and the cyber attacks that threaten them each. Intrusion detection systems provide a means of protection against various attacks. Hence substantiating the proposal of a host-based signature type intrusion detection system utilizing the semi-Markov process for IoT devices in a smart home environment. The semi-Markov chain could potentially prove as an effective means to acutely identify behavioral anomalies associated with nodes within an IoT environment. 
    more » « less
  4. Internet of Things (IoT) cyber threats, exemplified by jackware and crypto mining, underscore the vulnerability of IoT devices. Due to the multi-step nature of many attacks, early detection is vital for a swift response and preventing malware propagation. However, accurately detecting early-stage attacks is challenging, as attackers employ stealthy, zero-day, or adversarial machine learning to evade detection. To enhance security, we propose ARIoTEDef, an Adversarially Robust IoT Early Defense system, which identifies early-stage infections and evolves autonomously. It models multi-stage attacks based on a cyber kill chain and maintains stage-specific detectors. When anomalies in the later action stage emerge, the system retroactively analyzes event logs using an attention-based sequence-to-sequence model to identify early infections. Then, the infection detector is updated with information about the identified infections. We have evaluated ARIoTEDef against multi-stage attacks, such as the Mirai botnet. Results show that the infection detector’s average F1 score increases from 0.31 to 0.87 after one evolution round. We have also conducted an extensive analysis of ARIoTEDef against adversarial evasion attacks. Our results show that ARIoTEDef is robust and benefits from multiple rounds of evolution. 
    more » « less
  5. The increasing adoption of smart home devices has raised significant concerns regarding privacy, security, and vulnerability to cyber threats. This study addresses these challenges by presenting a federated learning framework enhanced with blockchain technology to detect intrusions in smart home environments. The proposed approach combines knowledge distillation and transfer learning to support heterogeneous IoT devices with varying computational capacities, ensuring efficient local training without compromising privacy. Blockchain technology is integrated to provide decentralized, tamper-resistant access control through Role-Based Access Control (RBAC), allowing only authenticated devices to participate in the federated learning process. This combination ensures data confidentiality, system integrity, and trust among devices. This framework’s performance was evaluated using the N-BaIoT dataset, showcasing its ability to detect anomalies caused by botnets such as Mirai and BASHLITE across diverse IoT devices. Results demonstrate significant improvements in intrusion detection accuracy, particularly for resource-constrained devices, while maintaining privacy and adaptability in dynamic smart home environments. These findings highlight the potential of this blockchain-enhanced federated learning system to offer a scalable, robust, and privacy-preserving solution for securing smart homes against evolving threats. 
    more » « less