skip to main content


Title: Efficient privacy-preserving machine learning in hierarchical distributed systems
With the dramatic growth of data in both amount and scale, distributed machine learning has become an important tool for the massive data to finish the tasks as prediction, classification, etc. However, due to the practical physical constraints and the potential privacy leakage of data, it is infeasible to aggregate raw data from all data owners or the learning purpose. To tackle this problem, the distributed privacy-preserving learning approaches are introduced to learn over all distributed data without exposing the real information. However, existing approaches have limits on the complicated distributed system. On the one hand, traditional privacy-preserving learning approaches rely on heavy cryptographic primitives on training data, in which the learning speed is dramatically slowed down due to the computation overheads. On the other hand, the complicated system architecture becomes a barrier in the practical distributed system. In this paper, we propose an efficient privacy-preserving machine learning scheme for hierarchical distributed systems. We modify and improve the collaborative learning algorithm. The proposed scheme not only reduces the overhead for the learning process but also provides the comprehensive protection for each layer of the hierarchical distributed system. In addition, based on the analysis of the collaborative convergency in different learning groups, we also propose an asynchronous strategy to further improve the learning efficiency of hierarchical distributed system. At the last, extensive experiments on real-world data are implemented to evaluate the privacy, efficacy, and efficiency of our proposed schemes.  more » « less
Award ID(s):
1722791
NSF-PAR ID:
10172906
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE transactions on network science and engineering
Volume:
6
Issue:
4
ISSN:
2334-329X
Page Range / eLocation ID:
599-612
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. While embracing various machine learning techniques to make effective decisions in the big data era, preserving the privacy of sensitive data poses significant challenges. In this paper, we develop a privacy-preserving distributed machine learning algorithm to address this issue. Given the assumption that each data provider owns a dataset with different sample size, our goal is to learn a common classifier over the union of all the local datasets in a distributed way without leaking any sensitive information of the data samples. Such an algorithm needs to jointly consider efficient distributed learning and effective privacy preservation. In the proposed algorithm, we extend stochastic alternating direction method of multipliers (ADMM) in a distributed setting to do distributed learning. For preserving privacy during the iterative process, we combine differential privacy and stochastic ADMM together. In particular, we propose a novel stochastic ADMM based privacy-preserving distributed machine learning (PS-ADMM) algorithm by perturbing the updating gradients, that provide differential privacy guarantee and have a low computational cost. We theoretically demonstrate the convergence rate and utility bound of our proposed PS-ADMM under strongly convex objective. Through our experiments performed on real-world datasets, we show that PS-ADMM outperforms other differentially private ADMM algorithms under the same differential privacy guarantee. 
    more » « less
  2. To provide intelligent and personalized services on smart devices, machine learning techniques have been widely used to learn from data, identify patterns, and make automated decisions. Machine learning processes typically require a large amount of representative data that are often collected through crowdsourcing from end users. However, user data could be sensitive in nature, and learning machine learning models on these data may expose sensitive information of users, violating their privacy. Moreover, to meet the increasing demand of personalized services, these learned models should capture their individual characteristics. This paper proposes a privacy-preserving approach for learning effective personalized models on distributed user data while guaranteeing the differential privacy of user data. Practical issues in a distributed learning system such as user heterogeneity are considered in the proposed approach. Moreover, the convergence property and privacy guarantee of the proposed approach are rigorously analyzed. Experiments on realistic mobile sensing data demonstrate that the proposed approach is robust to high user heterogeneity and offer a trade-off between accuracy and privacy. 
    more » « less
  3. To provide intelligent and personalized services on smart devices, machine learning techniques have been widely used to learn from data, identify patterns, and make automated decisions. Machine learning processes typically require a large amount of representative data that are often collected through crowdsourcing from end users. However, user data could be sensitive in nature, and training machine learning models on these data may expose sensitive information of users, violating their privacy. Moreover, to meet the increasing demand of personalized services, these learned models should capture their individual characteristics. This paper proposes a privacy-preserving approach for learning effective personalized models on distributed user data while guaranteeing the differential privacy of user data. Practical issues in a distributed learning system such as user heterogeneity are considered in the proposed approach. In addition, the convergence property and privacy guarantee of the proposed approach are rigorously analyzed. Experimental results on realistic mobile sensing data demonstrate that the proposed approach is robust to user heterogeneity and offers a good trade-off between accuracy and privacy. 
    more » « less
  4. null (Ed.)
    Federated learning (FL) is a highly pursued machine learning technique that can train a model centrally while keeping data distributed. Distributed computation makes FL attractive for bandwidth limited applications especially in wireless communications. There can be a large number of distributed edge devices connected to a central parameter server (PS) and iteratively download/upload data from/to the PS. Due to limited bandwidth, only a subset of connected devices can be scheduled in each round. There are usually millions of parameters in the state-of-art machine learning models such as deep learning, resulting in a high computation complexity as well as a high communication burden on collecting/distributing data for training. To improve communication efficiency and make the training model converge faster, we propose a new scheduling policy and power allocation scheme using non-orthogonal multiple access (NOMA) settings to maximize the weighted sum data rate under practical constraints during the entire learning process. NOMA allows multiple users to transmit on the same channel simultaneously. The user scheduling problem is transformed into a maximum-weight independent set problem that can be solved using graph theory. Simulation results show that the proposed scheduling and power allocation scheme can help achieve a higher FL testing accuracy in NOMA based wireless networks than other existing schemes within the same learning time. 
    more » « less
  5. Abstract

    The rapid improvements in genomic sequencing technology have led to the proliferation of locally collected genomic datasets. Given the sensitivity of genomic data, it is crucial to conduct collaborative studies while preserving the privacy of the individuals. However, before starting any collaborative research effort, the quality of the data needs to be assessed. One of the essential steps of the quality control process is population stratification: identifying the presence of genetic difference in individuals due to subpopulations. One of the common methods used to group genomes of individuals based on ancestry is principal component analysis (PCA). In this article, we propose a privacy-preserving framework which utilizes PCA to assign individuals to populations across multiple collaborators as part of the population stratification step. In our proposed client-server-based scheme, we initially let the server train a global PCA model on a publicly available genomic dataset which contains individuals from multiple populations. The global PCA model is later used to reduce the dimensionality of the local data by each collaborator (client). After adding noise to achieve local differential privacy (LDP), the collaborators send metadata (in the form of their local PCA outputs) about their research datasets to the server, which then aligns the local PCA results to identify the genetic differences among collaborators’ datasets. Our results on real genomic data show that the proposed framework can perform population stratification analysis with high accuracy while preserving the privacy of the research participants.

     
    more » « less