skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: KV-Fresh: Freshness authentication for outsourced multi-version key-value stores
Data outsourcing is a promising technical paradigm to facilitate cost-effective real-time data storage, processing, and dissemination. In such a system, a data owner proactively pushes a stream of data records to a third-party cloud server for storage, which in turn processes various types of queries from end users on the data owner’s behalf. This paper considers outsourced multi-version key-value stores that have gained increasing popularity in recent years, where a critical security challenge is to ensure that the cloud server returns both authentic and fresh data in response to end users’ queries. Despite several recent attempts on authenticating data freshness in outsourced key value stores, they either incur excessively high communication cost or can only offer very limited real-time guarantee. To fill this gap, this paper introduces KV-Fresh, a novel freshness authentication scheme for outsourced key-value stores that offers strong real-time guarantee. KV-Fresh is designed based on a novel data structure, Linked Key Span Merkle Hash Tree, which enables highly efficient freshness proof by embedding chaining relationship among records generated at different time. Detailed simulation studies using a synthetic dataset generated from real data confirm the efficacy and efficiency of KV-Fresh.  more » « less
Award ID(s):
1651954 1933047 1718078
PAR ID:
10172907
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE International Conference on Computer Communications (INFOCOM)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Data outsourcing is a promising technical paradigm to facilitate cost-effective real-time data storage, processing, and dissemination. In such a system, a data owner proactively pushes a stream of data records to a third-party cloud server for storage, which in turn processes various types of queries from end users on the data owner’s behalf. This paper considers outsourced multi-version key-value stores that have gained increasing popularity in recent years, where a critical security challenge is to ensure that the cloud server returns both authentic and fresh data in response to end users’ queries. Despite several recent attempts on authenticating data freshness in outsourced key-value stores, they either incur excessively high communication cost or can only offer very limited real-time guarantee. To fill this gap, this paper introduces KV-Fresh, a novel freshness authentication scheme for outsourced key-value stores that offers strong real-time guarantee. KV-Fresh is designed based on a novel data structure, Linked Key Span Merkle Hash Tree, which enables highly efficient freshness proof by embedding chaining relationship among records generated at different time. Detailed simulation studies using a synthetic dataset generated from real data confirm the efficacy and efficiency of KV-Fresh. 
    more » « less
  2. Key-value (KV) software has proven useful to a wide variety of applications including analytics, time-series databases, and distributed file systems. To satisfy the requirements of diverse workloads, KV stores have been carefully tailored to best match the performance characteristics of underlying solid-state block devices. Emerging KV storage device is a promising technology for both simplifying the KV software stack and improving the performance of persistent storage-based applications. However, while providing fast, predictable put and get operations, existing KV storage devices don’t natively support range queries which are critical to all three types of applications described above. In this paper, we present KVRangeDB, a software layer that enables processing range queries for existing hash-based KV solid-state disks (KVSSDs). As an effort to adapt to the performance characteristics of emerging KVSSDs, KVRangeDB implements log-structured merge tree key index that reduces compaction I/O, merges keys when possible, and provides separate caches for indexes and values. We evaluated the KVRangeDB under a set of representative workloads, and compared its performance with two existing database solutions: a Rocksdb variant ported to work with the KVSSD, and Wisckey, a key-value database that is carefully tuned for conventional block devices. On filesystem aging workloads, KVRangeDB outperforms Wisckey by 23.7x in terms of throughput and reduce CPU usage and external write amplifications by 14.3x and 9.8x, respectively. 
    more » « less
  3. This paper addresses volume leakage (i.e., leakage of the number of records in the answer set) when processing keyword queries in encrypted key-value (KV) datasets. Volume leakage, coupled with prior knowledge about data distribution and/or previously executed queries, can reveal both ciphertexts and current user queries. We develop a solution to prevent volume leakage, entitled Veil, that partitions the dataset by randomly mapping keys to a set of equi-sized buckets. Veil provides a tunable mechanism for data owners to explore a trade-off between storage and communication overheads. To make buckets indistinguishable to the adversary, Veil uses a novel padding strategy that allow buckets to overlap, reducing the need to add fake records. Both theoretical and experimental results show Veil to significantly outperform existing state-of-the-art. 
    more » « less
  4. Key-value (KV) stores play an increasingly critical role in supporting diverse large-scale applications in modern data centers hosting terabytes of KV items which even might reside on a single server due to virtualization purpose. The combination of ever growing volume of KV items and storage/application consolidation is driving a trend of high storage density for KV stores. Shingled Magnetic Recording (SMR) represents a promising technology for increasing disk capacity, but it comes at a cost of poor random write performance and severe I/O amplification. Applications/software working with SMR devices need to be designed and optimized in an SMR-friendly manner. In this work, we present SEALDB, a Log-Structured Merge tree (LSM-tree) based key-value store that is specifically op- timized for and works well with SMR drives via adequately addressing the poor random writes and severe I/O amplification issues. First, for LSM-trees, SEALDB concatenates SSTables of each compaction, and groups them into sets. Taking sets as the basic unit for compactions, SEALDB improves compaction efficiency by mitigating random I/Os. Second, SEALDB creates varying size bands on HM-SMR drives, named dynamic bands. Dynamic bands not only accommodate the storage of sets, but also eliminate the auxiliary write amplification from SMR drives. We demonstrate the advantages of SEALDB via extensive experiments in various workloads. Overall, SEALDB delivers impressive performance improvement. Compared with LevelDB, SEALDB is 3.42× faster on random load due to improved compaction efficiency and eliminated auxiliary write amplification on SMR drives. 
    more » « less
  5. Distributed key-value stores today require frequent key-value shard migration between nodes to react to dynamic workload changes for load balancing, data locality, and service elasticity. In this paper, we propose NetMigrate, a live migration approach for in-memory key-value stores based on programmable network data planes. NetMigrate migrates shards between nodes with zero service interruption and minimal performance impact. During migration, the switch data plane monitors the migration process in a fine-grained manner and directs client queries to the right server in real time, eliminating the overhead of pulling data between nodes. We implement a NetMigrate prototype on a testbed consisting of a programmable switch and several commodity servers running Redis and evaluate it under YCSB workloads. Our experiments demonstrate that NetMigrate improves the query throughput from 6.5% to 416% and maintains low access latency during migration, compared to the state-of-the-art migration approaches. 
    more » « less