skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tracing cell trajectories in a biofilm
Born in 1881 on a farm in Pennsylvania, Alice C. Evans dedicated her life to studying bacteria in dairy products. Early in her career, Alice became convinced that most bacteria display multicellular behavior as part of their life cycles. At the time, the morphological changes observed in bacterial life cycles created confusion among scientists. In 1928, as the first female president of the American Society for Microbiology, Alice wrote to the scientific community: “When one-celled organisms grow in masses, … individual cells influence and protect one another.” She continued, “Bacteriologists need not feel chagrinned … to admit that… forms they have considered as different genera are but stages in the life cycle of one species” (1). Nearly 100 years later, on page 71 of this issue, Qin et al. (2) make a substantial leap forward in deciphering cell dynamics in biofilms—groups of microorganisms that adhere to a surface, and each other, by excreting matrix components.  more » « less
Award ID(s):
1715477
PAR ID:
10172943
Author(s) / Creator(s):
Date Published:
Journal Name:
Science magazine
Volume:
369
Issue:
6499
ISSN:
1962-4093
Page Range / eLocation ID:
30-31
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In the quantum compression scheme proposed by Schumacher, Alice compresses a message that Bob decompresses. In that approach, there is some probability of failure and, even when successful, some distortion of the state. For sufficiently large blocklengths, both of these imperfections can be made arbitrarily small while achieving a compression rate that asymp- totically approaches the source coding bound. However, direct implementation of Schumacher compression suffers from poor circuit complexity. In this paper, we consider a slightly different approach based on classical syndrome source coding. The idea is to use a linear error-correcting code and treat the state to be compressed as a superposition of error patterns. Then, Alice can use quantum gates to apply the parity-check matrix to her message state. This will convert it into a superposition of syndromes. If the original superposition was supported on correctable errors (e.g., coset leaders), then this process can be reversed by decoding. An implementation of this based on polar codes is described and simulated. As in classical source coding based on polar codes, Alice maps the information into the “frozen” qubits that constitute the syndrome. To decompress, Bob utilizes a quantum version of successive cancellation coding. 
    more » « less
  2. Abstract Quantum Key Distribution allows two parties to establish a secret key that is secure against computationally unbounded adversaries. To extend the distance between parties, quantum networks are vital. Typically, security in such scenarios assumes the absolute worst case: namely, an adversary has complete control over all repeaters and fiber links in a network and is able to replace them with perfect devices, thus allowing her to hide her attack within the expected natural noise. In a large-scale network, however, such a powerful attack may be infeasible. In this paper, we analyze the case where the adversary can only corrupt a subset of the repeater network connecting Alice and Bob, while some portion of the network near Alice and Bob may be considered safe from attack (though still noisy). We derive a rigorous finite key proof of security assuming this attack model, and show that improved performance and noise tolerances are possible. Our proof methods may be useful to other researchers investigating partially corrupted quantum networks, and our main result may be beneficial to future network operators. 
    more » « less
  3. Phage emit communication signals that inform their lytic and lysogenic life cycles. However, little is known regarding the abundance and diversity of the genes associated with phage communication systems in wastewater treatment microbial communities. This study focused on phage communities within two distinct biochemical wastewater environments, specifically aerobic membrane bioreactors (AeMBRs) and anaerobic membrane bioreactors (AnMBRs) exposed to varying antibiotic concentrations. Metagenomic data from the bench-scale systems were analyzed to explore phage phylogeny, life cycles, and genetic capacity for antimicrobial resistance and quorum sensing. Two dominant phage families, Schitoviridae and Peduoviridae, exhibited redox-dependent dynamics. Schitoviridae prevailed in anaerobic conditions, while Peduoviridae dominated in aerobic conditions. Notably, the abundance of lytic and lysogenic proteins varied across conditions, suggesting the coexistence of both life cycles. Furthermore, the presence of antibiotic resistance genes (ARGs) within viral contigs highlighted the potential for phage to transfer ARGs in AeMBRs. Finally, quorum sensing genes in the virome of AeMBRs indicated possible molecular signaling between phage and bacteria. Overall, this study provides insights into the dynamics of viral communities across varied redox conditions in MBRs. These findings shed light on phage life cycles, and auxiliary genetic capacity such as antibiotic resistance and bacterial quorum sensing within wastewater treatment microbial communities. 
    more » « less
  4. Covert communication is achieved when a transmitter Alice can successfully transmit a message to a receiver Bob without being detected by an attentive and capable adversary Willie. Early results demonstrated the difficulty of the covert communications problem: with AWGN discrete-time channels between all parties, only O(sqrt(n)) bits can be sent in n channel uses. But it was soon recognized that uncertainty about the environment at Willie, for example, uncertainty in his own noise statistics, could allow for a positive rate: O(n) bits can be sent covertly in n channel uses. However, most covert communication results, including this promising positive rate result, have been obtained for a discrete-time communications channel. Here, we demonstrate that the assumption of a discrete-time channel is problematic when trying to exploit Willie's noise uncertainty. In particular, we demonstrate that if Alice transmits ω(sqrt(T)) bits in a length T interval to Bob on a continuous-time channel, then there exists a detector at Willie that can detect her transmission, as the probability of false alarm and missed detection PMD+PFA→0 as T→∞. In other words, the communication is not covert, unlike the case of a discrete-time channel. 
    more » « less
  5. Among mammals, post-reproductive life spans are currently documented only in humans and a few species of toothed whales. Here we show that a post-reproductive life span exists among wild chimpanzees in the Ngogo community of Kibale National Park, Uganda. Post-reproductive representation was 0.195, indicating that a female who reached adulthood could expect to live about one-fifth of her adult life in a post-reproductive state, around half as long as human hunter-gatherers. Post-reproductive females exhibited hormonal signatures of menopause, including sharply increasing gonadotropins after age 50. We discuss whether post-reproductive life spans in wild chimpanzees occur only rarely, as a short-term response to favorable ecological conditions, or instead are an evolved species-typical trait as well as the implications of these alternatives for our understanding of the evolution of post-reproductive life spans. 
    more » « less