skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 7, 2025

Title: Quantum State Compression with Polar Codes
In the quantum compression scheme proposed by Schumacher, Alice compresses a message that Bob decompresses. In that approach, there is some probability of failure and, even when successful, some distortion of the state. For sufficiently large blocklengths, both of these imperfections can be made arbitrarily small while achieving a compression rate that asymp- totically approaches the source coding bound. However, direct implementation of Schumacher compression suffers from poor circuit complexity. In this paper, we consider a slightly different approach based on classical syndrome source coding. The idea is to use a linear error-correcting code and treat the state to be compressed as a superposition of error patterns. Then, Alice can use quantum gates to apply the parity-check matrix to her message state. This will convert it into a superposition of syndromes. If the original superposition was supported on correctable errors (e.g., coset leaders), then this process can be reversed by decoding. An implementation of this based on polar codes is described and simulated. As in classical source coding based on polar codes, Alice maps the information into the “frozen” qubits that constitute the syndrome. To decompress, Bob utilizes a quantum version of successive cancellation coding.  more » « less
Award ID(s):
2106213 2120757
PAR ID:
10579730
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-8284-6
Page Range / eLocation ID:
2050 to 2055
Format(s):
Medium: X
Location:
Athens, Greece
Sponsoring Org:
National Science Foundation
More Like this
  1. Cryptographic protocols are often implemented at upper layers of communication networks, while error-correcting codes are employed at the physical layer. In this paper, we consider utilizing readily-available physical layer functions, such as encoders and decoders, together with shared keys to provide a threshold-type security scheme. To this end, the effect of physical layer communication is abstracted out and the channels between the legitimate parties, Alice and Bob, and the eaves-dropper Eve are assumed to be noiseless. We introduce a model for threshold-secure coding, where Alice and Bob communicate using a shared key in such a way that Eve does not get any information, in an information-theoretic sense, about the key as well as about any subset of the input symbols of size up to a certain threshold. Then, a framework is provided for constructing threshold-secure codes form linear block codes while characterizing the requirements to satisfy the reliability and security conditions. Moreover, we propose a threshold-secure coding scheme, based on Reed-Muller (RM) codes, that meets security and reliability conditions. Furthermore, it is shown that the encoder and the decoder of the scheme can be implemented efficiently with quasi-linear time complexity. In particular, a low-complexity successive cancellation decoder is shown for the RM-based scheme. Also, the scheme is flexible and can be adapted given any key length. 
    more » « less
  2. Detection of very weak forces and precise measurement of time are two of the many applications of quantum metrology to science and technology. To sense an unknown physical parameter, one prepares an initial state of a probe system, allows the probe to evolve as governed by a Hamiltonian H for some time t, and then measures the probe. If H is known, we can estimate t by this method; if t is known, we can estimate classical parameters on which H depends. The accuracy of a quantum sensor can be limited by either intrinsic quantum noise or by noise arising from the interactions of the probe with its environment. In this work, we introduce and study a fundamental trade-off, which relates the amount by which noise reduces the accuracy of a quantum clock to the amount of information about the energy of the clock that leaks to the environment. Specifically, we consider an idealized scenario in which a party Alice prepares an initial pure state of the clock, allows the clock to evolve for a time that is not precisely known, and then transmits the clock through a noisy channel to a party Bob. Meanwhile, the environment (Eve) receives any information about the clock that is lost during transmission. We prove that Bob’s loss of quantum Fisher information about the elapsed time is equal to Eve’s gain of quantum Fisher information about a complementary energy parameter. We also prove a similar, but more general, trade-off that applies when Bob and Eve wish to estimate the values of parameters associated with two noncommuting observables. We derive the necessary and sufficient conditions for the accuracy of the clock to be unaffected by the noise, which form a subset of the Knill-Laflamme error-correction conditions. A state and its local time-evolution direction, if they satisfy these conditions, are said to form a metrological code. We provide a scheme to construct metrological codes in the stabilizer formalism. We show that there are metrological codes that cannot be written as a quantum error-correcting code with similar distance in which the Hamiltonian acts as a logical operator, potentially offering new schemes for constructing states that do not lose any sensitivity upon application of a noisy channel. We discuss applications of the trade-off relation to sensing using a quantum many-body probe subject to erasure or amplitude-damping noise. 
    more » « less
  3. We consider the task of communicating a generic bivariate function of two classical correlated sources over a Classical-Quantum Multiple Access Channel (CQ-MAC). The two sources are observed at the encoders of the CQ-MAC, and the decoder aims at reconstructing a bivariate function from the received quantum state. We first propose a coding scheme based on asymptotically good algebraic structured codes, in particular, nested coset codes, and provide a set of sufficient conditions for the reconstruction of the function of the sources over a CQ- MAC. The proposed technique enables the decoder to recover the desired function without recovering the sources themselves. We further improve this by employing a coding scheme based on a classical superposition of algebraic structured codes and unstructured codes. This coding scheme allows exploiting the symmetric structure common amongst the sources and also leverage the asymmetries. We derive a new set of sufficient conditions that strictly enlarges the largest known set of sources whose function can be reconstructed over any given CQ-MAC, and identify examples demonstrating the same. We provide these conditions in terms of single-letter quantum information- theoretic quantities. 
    more » « less
  4. Quantum cryptography provides absolute security against an all-powerful eavesdropper (Eve). However, in practice Eve's resources may be restricted to a limited aperture size so that she cannot collect all paraxial light without alerting the communicating parties (Alice and Bob). In this paper we study a quantum wiretap channel in which the connection from Alice to Eve is lossy, so that some of the transmitted quantum information is inaccessible to both Bob and Eve. For a pureloss channel under such restricted eavesdropping, we show that the key rates achievable with a two-mode squeezed vacuum state, heterodyne detection, and public classical communication assistance-given by the Hashing inequality-can exceed the secret key distillation capacity of the channel against an omnipotent eavesdropper. We report upper bounds on the key rates under the restricted eavesdropping model based on the relative entropy of entanglement, which closely match the achievable rates. For the pure-loss channel under restricted eavesdropping, we compare the secret-key rates of continuous-variable (CV) quantum key distribution (QKD) based on Gaussian-modulated coherent states and heterodyne detection with the discrete variable (DV) decoystate BB84 QKD protocol based on polarization qubits encoded in weak coherent laser pulses. 
    more » « less
  5. This paper considers the design and decoding of polar codes for general classical-quantum (CQ) channels. It focuses on decoding via belief-propagation with quantum messages (BPQM) and, in particular, the idea of paired-measurement BPQM (PM-BPQM) decoding. Since the PM-BPQM decoder admits a classical density evolution (DE) analysis, one can use DE to design a polar code for any CQ channel and then efficiently compute the trade-off between code rate and error probability. We have also implemented and tested a classical simulation of our PM-BPQM decoder for polar codes. While the decoder can be implemented efficiently on a quantum computer, simulating the decoder on a classical computer actually has exponential complexity. Thus, simulation results for the decoder are somewhat limited and are included primarily to validate our theoretical results. 
    more » « less