skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A 2.6-gram sound and movement tag for studying the acoustic scene and kinematics of echolocating bats.
To study sensorimotor behaviour in wild animals, it is necessary to synchronously record the sensory inputs available to the animal, and its movements. To do this, we have developed a biologging device that can record the primary sensory information and the associated movements during foraging and navigating in echolocating bats. This 2.6‐g tag records the sonar calls and echoes from an ultrasonic microphone, while simultaneously sampling fine‐scale movement in three dimensions from wideband accelerometers and magnetometers. In this study, we tested the tag on an European noctula Nyctalus noctula during target approaches and on four big brown bats Eptesicus fuscus during prey interception in a flight room. We show that the tag records both the outgoing calls and echoes returning from objects at biologically relevant distances. Inertial sensor data enables the detection of behavioural events such as flying, turning, and resting. In addition, individual wing‐beats can be tracked and synchronized to the bat's sound emissions to study the coordination of different motor events. By recording the primary acoustic flow of bats concomitant with associated behaviours on a very fine time‐scale, this type of biologging method will foster a deeper understanding of how sensory inputs guide feeding behaviours in the wild.  more » « less
Award ID(s):
1734744
PAR ID:
10172944
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Methods in ecology and evolution
Volume:
10
ISSN:
2041-210X
Page Range / eLocation ID:
48-58
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Rapid advancements in biologging technology have led to unprecedented insights into animal behaviour, but testing the effects of biologgers on tagged animals is necessary for both scientific and ethical reasons. Here, we measured how quickly 13 wild-caught and captively isolated common vampire bats ( Desmodus rotundus ) habituated to mock proximity sensors glued to their dorsal fur. To assess habituation, we scored video-recorded behaviours every minute from 18.00 to 06.00 for 3 days, then compared the rates of grooming directed to the sensor tag versus to their own body. During the first hour, the mean tag-grooming rate declined dramatically from 53% of sampled time (95% CI = 36–65%, n = 6) to 16% (8–24%, n = 9), and down to 4% by hour 5 (1–6%, n = 13), while grooming of the bat's own body did not decline. When tags are firmly attached, isolated individual vampire bats mostly habituate within an hour of tag attachment. In two cases, however, tags became loose before falling off causing the bats to dishabituate. For tags glued to fur, behavioural data are likely to be impacted immediately after the tag is attached and when it is loose before it falls off. 
    more » « less
  2. Hearing mediates many behaviours critical for survival in echolocating bats, including foraging and navigation. Although most mammals are susceptible to progressive age-related hearing loss, the evolution of biosonar, which requires the ability to hear low-intensity echoes from outgoing sonar signals, may have selected against the development of hearing deficits in bats. Many echolocating bats exhibit exceptional longevity and rely on acoustic behaviours for survival to old age; however, relatively little is known about the ageing bat auditory system. In this study, we used DNA methylation to estimate the ages of wild-caught big brown bats (Eptesicus fuscus) and measured hearing sensitivity in young and ageing bats using auditory brainstem responses (ABRs) and distortion product otoacoustic emissions (DPOAEs). We found no evidence for hearing deficits in bats up to 12.5 years of age, demonstrated by comparable thresholds and similar ABR and DPOAE amplitudes across age groups. We additionally found no significant histological evidence for cochlear ageing, with similar hair cell counts, afferent and efferent innervation patterns in young and ageing bats. Here, we demonstrate that big brown bats show minimal evidence for age-related hearing loss and therefore represent informative models for investigating mechanisms that may preserve hearing function over a long lifetime. 
    more » « less
  3. Hiryu, Shizuko (Ed.)
    Many species of bats rely on echoes to forage and navigate in densely vegetated environments. Foliage echoes in some cases can help bats gather information about the environment, whereas in others may generate clutter that can mask prey echoes during foraging. It is therefore important to study foliage echoes and their role in bat’s sensory ecology. In our prior work, a foliage echo simulator has been developed; simulated echoes has been compared with field recordings using a biomimetic sonar head. In this work, we improve the existing simulator by allowing more flexible experimental setups and enabling a closer match with the experiments. Specifically, we add additional features into the simulator including separate directivity patterns for emitter and receiver, the ability to place emitter and receiver at distinct locations, and multiple options to orient the foliage to mimic natural conditions like strong wind. To study how accurately the simulator can replicate the real echo-generating process, we compare simulated echoes with experimental echoes measured by ensonifying a single leaf across four different species of trees. We further extend the prior work on estimating foliage parameters to estimating a map of the environment. 
    more » « less
  4. Marshall, James AR (Ed.)
    Some echolocating bats, such asTadarida brasiliensis, fly in groups when emerging from or entering caves. In large, dense swarms, distinguishing self-generated echoes from the multitude of calls and echoes produced by others presents a significant challenge – akin to a cocktail party nightmare. While spectral jamming responses have been proposed as a solution, this mechanism is unlikely to be effective in such conditions. Here, we propose an alternative hypothesis: rather than isolating their own echoes, bats might navigate by relying on the local amplitude gradient of the collective soundscape. To test this, we developed an agent-based simulation of bats flying through corridors, demonstrating that they can avoid obstacles, including other bats and corridor walls, without distinguishing individual echoes. Our findings suggest that in dense swarms, bats can exploit the emergent acoustic environment to maintain safe distances. The current paper also suggests shifting the perspective on jamming itself. Rather than framing overlapping signals solely as a source of interference, our findings highlight that these signals can also carry useful information, reframing the problem from conflict to cooperative signal processing. 
    more » « less
  5. Diel vertical migration (DVM) is a vital behavior for many pelagic marine fauna. Locomotory tactics that animals use during DVM define the metabolic costs of migrations and influence the risk of detection and capture by predators, yet, for squids, there is little understanding of the fine-scale movements and potential variability during these migrations. Vertical migratory behaviors of 5 veined squid Loligo forbesii were investigated with biologging tags (ITags) off the Azores Islands (central North Atlantic). Diel movements ranged from 400 to 5 m and were aligned with sunset and sunrise. During ascent periods, 2 squid exhibited cyclic climb-and-glide movements using primarily jet propulsion, while 3 squid ascended more continuously and at a lower vertical speed using mostly a finning gait. Descents for all 5 squid were consistently more rapid and direct. While all squid swam in both arms-first and mantle-first directions during DVM, mantle-first swimming was more common during upward movements, particularly at vertical speeds greater than 25 cm s -1 . The in situ variability of animal posture, swim direction, and gait use revealed behavioral flexibility interpreted as energy conservation, prey capture, and predator avoidance. 
    more » « less