skip to main content


Title: Tunable Reflectors Enabled Environment Augmentation for Better mmWave WLANs
With significant commercial potentials, millimeter- wave (mmWave) based wireless local area networks (WLANs) have attracted intensive attention lately. Unfortunately, the susceptible transmission characteristics over mmWave bands, especially the vulnerability to blockages, poses significant design challenges. Although existing solutions, such as beamforming, can overcome some of the problems, they usually focus on enhancing end transceivers to adapt to the transmission environments, and sometimes are still less effective. In this paper, by deploying highly-reflective cheap metallic plates as tunable reflectors without damaging the aesthetic nature of the environments, we propose to augment WLAN transmission environments in a way to create more effective alternative indirect line-of-sight (LOS) links by adjusting the orientations of the reflectors. Based on this idea, we design a novel adaptive mechanism, called mmRef, to effectively tune the angels of the deployed reflectors and develop corresponding operational procedures. Our performance study demonstrates our proposed scheme could achieve significant gain by tuning the angles of deployed reflectors in the augmented transmission environment.  more » « less
Award ID(s):
1722791
NSF-PAR ID:
10172948
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
IEEE/CIC International Conference on Communications in China (ICCC)
Page Range / eLocation ID:
7 to 12
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. To support the demand of multi-Gbps sensory data exchanges for enhancing (semi)-autonomous driving, millimeter-wave bands (mmWave) vehicular-to-infrastructure (V2I) communications have attracted intensive attention. Unfortunately, the vulnerability to blockages over mmWave bands poses significant design challenges, which can be hardly addressed by manipulating end transceivers, such as beamforming techniques. In this paper, we propose to enhance mmWave V2I communications by augmenting the transmission environments through reflection, where highly-reflective cheap metallic plates are deployed as tunable reflectors without damaging the aesthetic nature of the environments. In this way, alternative indirect line-of-sight (LOS) links are established by adjusting the angle of reflectors. Our fundamental challenge is to adapt the time-consuming reflector angle tuning to the highly dynamic vehicular environment. By using deep reinforcement learning, we propose the learning-based Fast Reflection (LFR) algorithm, which autonomously learns from the observable traffic pattern to select desirable reflector angles in advance for probably blocked vehicles in near future. Simulation results demonstrate our proposal could effectively augment mmWave V2I transmission environments with significant performance gain. 
    more » « less
  2. We propose Argus, a system to enable millimeter-wave (mmWave) deployers to quickly complete site-surveys without sacrificing the accuracy and effectiveness of thorough network deployment surveys. Argus first models the mmWave reflection profile of an environment, considering dominant reflectors, and then use this model to find locations that maximize the usability of the reflectors. The key component in Argus is an efficient machine learning model that can map the visual data to the mmWave signal reflections of an environment and can accurately predict mmWave signal profile at any unobserved locations. It allows Argus to find the best picocell locations to provide maximum coverage and also lets users self-localize accurately anywhere in the environment. Furthermore, Argus allows mmWave picocells to predict device's orientation accurately and enables object tagging and retrieval for VR/AR applications. Currently, we implement and test Argus on two different buildings consisting of multiple different indoor environments. However, the generalization capability of Argus can easily update the model for unseen environments, and thus, Argus can be deployed to any indoor environment with little or no model fine-tuning. 
    more » « less
  3. To accommodate increasingly intensive application bandwidth demands, mmWave WLAN at 60 GHz has been identified as a promising technology with the potential to achieve Gbps throughput. However, mmWave performance is highly dependent on the signal's line-of-sight (LoS) condition due to its high penetration loss when obstructed. We study the use of dedicated flat passive reflectors to improve coverage in indoor mmWave WLANs through a reflector placement scheme that accommodates any general indoor scenario with pre-deployed ceiling-mounted access points (APs). The reflector locations are efficiently selected among all available vertical surfaces within the indoor environment. Through simulations, we show that deployment of intelligently placed reflectors can improve LoS coverage by up to 10%, which is more than deploying one additional AP. Results are provided to illustrate how different factors affect coverage and insights about preferred reflector placements are provided. 
    more » « less
  4. Since its advent in the 1970s, optical tweezers have been widely deployed as a preferred non-contact technique for manipulating microscale objects. On-chip integrated optical tweezers, which afford significant size, weight, and cost benefits, have been implemented, relying upon near-field evanescent waves. As a result, these tweezers are only capable of manipulation in near-surface regions and often demand high power since the evanescent interactions are relatively weak. We introduce on-chip optical tweezers based on freeform micro-optics, which comprise optical reflectors or refractive lenses integrated on waveguide end facets via two-photon polymerization. The freeform optical design offers unprecedented degrees of freedom to design optical fields with strong three-dimensional intensity gradients, useful for trapping and manipulating suspended particles in an integrated chip-scale platform. We demonstrate the design, fabrication, and measurement of both reflective and refractive micro-optical tweezers. The reflective tweezers feature a remarkably low trapping threshold power, and the refractive tweezers are particularly useful for multiparticle trapping and interparticle interaction analysis. Our integrated micro-optical tweezers uniquely combine a compact footprint, broadband operation, high trapping efficiency, and scalable integration with planar photonic circuits. This class of tweezers is promising for on-chip sensing, cell assembly, particle dynamics analysis, and ion trapping.

     
    more » « less
  5. mmWave communication has been recognized as a highly promising technology for 5G wireless backhaul, which is capable of providing multi-gigabit per second transmission rates. However, in urban wireless backhaul environments, unforeseen events can cause short-term blockages or node failures and, therefore, network survivability is extremely important. In this paper, we investigate a novel relay-assisted mmWave backhaul network architecture, where a number of small-cell BSs and relays are deployed, e.g. on the lampposts of urban streets. Relays are used to provide multi-hop line-of-sight paths between small-cell BSs, which form logical links of the network. In this scenario, the interconnected logical links make up a mesh network, which offers opportunities for both link-level and network-level reconfiguration. We propose two joint link-network level reconfiguration schemes for recovery after exceptional events. One prioritizes relay path (link-level) reconfiguration and uses alternate network-level paths only if necessary. The other splits traffic on both reconfigured links and backup paths to improve network throughput. Simulation results demonstrate that the proposed schemes significantly outperform purely link-level and purely network-level reconfiguration schemes. The proposed approaches are shown to not only maintain high network throughput but to also provide robust blockage/fault tolerance across a range of scenarios for urban mmWave backhaul networks. 
    more » « less