skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 9, 2025

Title: mmPalm: Unlocking Ubiquitous User Authentication through Palm Recognition with mmWave Signals
Biometric authentication systems are increasingly needed across a broad range of applications including in smart city environments (e.g., entering hotels), and in smart home environments (e.g., controlling smart devices). Traditional methods, such as face-based and fingerprint-based authentication, usually incur high costs to be installed in all this kind of environments. In this paper, we develop a ubiquitous low-effort user authentication approach, mmPalm, based on palm recognition using millimeter wave (mmWave) signals. mmWave technology has been adopted by WiGig and 5G, making mmPalm a low-cost solution that can be widely adopted in public places. In addition, the high resolution of mmWave signals allows mmPalm to extract detailed palm characteristics (e.g., palm geometry, skin thickness, and texture) that can assemble distinctive palmprints for user authentication. Our innovative virtual antennas design further increases the spatial resolution of a commercial mmWave device, enabling it to fully capture the comprehensive palmprint features. Moreover, to address the challenge of small-scale environmental changes (e.g., variations in palm-device distances and palm orientations), we design a novel palm profile augmentation method, utilizing a Conditional Generative Adversarial Network (cGAN) to generate synthetic palm profiles for mitigating palm instability. Furthermore, we design a cross-environment adaptation framework based on transfer learning to address the challenge of large-scale environmental changes, including multipath variations introduced by human bodies and nearby furniture. Extensive experiments with 30 participants through 6 months demonstrate that mmPalm achieves 99% authentication accuracy with resilience against different types of attacks, including random, impersonation, and counterfeit.  more » « less
Award ID(s):
2311598
PAR ID:
10536714
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
IEEE Conference on Communications and Network Security (CNS),
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. User authentication is a critical process in both corporate and home environments due to the ever-growing security and privacy concerns. With the advancement of smart cities and home environments, the concept of user authentication is evolved with a broader implication by not only preventing unauthorized users from accessing confidential information but also providing the opportunities for customized services corresponding to a specific user. Traditional approaches of user authentication either require specialized device installation or inconvenient wearable sensor attachment. This paper supports the extended concept of user authentication with a device-free approach by leveraging the prevalent WiFi signals made available by IoT devices, such as smart refrigerator, smart TV and thermostat, etc. The proposed system utilizes the WiFi signals to capture unique human physiological and behavioral characteristics inherited from their daily activities, including both walking and stationary ones. Particularly, we extract representative features from channel state information (CSI) measurements of WiFi signals, and develop a deep learning based user authentication scheme to accurately identify each individual user. Extensive experiments in two typical indoor environments, a university office and an apartment, are conducted to demonstrate the effectiveness of the proposed authentication system. In particular, our system can achieve over 94% and 91% authentication accuracy with 11 subjects through walking and stationary activities, respectively. 
    more » « less
  2. null (Ed.)
    User authentication is a critical process in both corporate and home environments due to the ever-growing security and privacy concerns. With the advancement of smart cities and home environments, the concept of user authentication is evolved with a broader implication by not only preventing unauthorized users from accessing confidential information but also providing the opportunities for customized services corresponding to a specific user. Traditional approaches of user authentication either require specialized device installation or inconvenient wearable sensor attachment. This article supports the extended concept of user authentication with a device-free approach by leveraging the prevalent WiFi signals made available by IoT devices, such as smart refrigerator, smart TV, and smart thermostat, and so on. The proposed system utilizes the WiFi signals to capture unique human physiological and behavioral characteristics inherited from their daily activities, including both walking and stationary ones. Particularly, we extract representative features from channel state information (CSI) measurements of WiFi signals, and develop a deep-learning-based user authentication scheme to accurately identify each individual user. To mitigate the signal distortion caused by surrounding people’s movements, our deep learning model exploits a CNN-based architecture that constructively combines features from multiple receiving antennas and derives more reliable feature abstractions. Furthermore, a transfer-learning-based mechanism is developed to reduce the training cost for new users and environments. Extensive experiments in various indoor environments are conducted to demonstrate the effectiveness of the proposed authentication system. In particular, our system can achieve over 94% authentication accuracy with 11 subjects through different activities. 
    more » « less
  3. Commodity ultra-high-frequency (UHF) RFID authentication systems only provide weak user authentication, as RFID tags can be easily stolen, lost, or cloned by attackers. This paper presents the design and evaluation of SmartRFID, a novel UHF RFID authentication system to promote commodity crypto-less UHF RFID tags for security-sensitive applications. SmartRFID explores extremely popular smart devices and requires a legitimate user to enroll his smart device along with his RFID tag. Besides authenticating the RFID tag as usual, SmartRFID verifies whether the user simultaneously possesses the associated smart device with both feature-based machine learning and deep learning techniques. The user is considered authentic if and only if passing the dual verifications. Comprehensive user experiments on commodity smartwatches and RFID devices confirmed the high security and usability of SmartRFID. In particular, SmartRFID achieves a true acceptance rate of above 97.5% and a false acceptance rate of less than 0.7% based on deep learning. In addition, SmartRFID can achieve an average authentication latency of less than 2.21s, which is comparable to inputting a PIN on a door keypad or smartphone. 
    more » « less
  4. The popularity of smart home devices has led to an increase in security incidents happening in smart homes. A key measure to avoid such incidents is to authenticate users before they can interact with smart devices. However, current methods often require additional hardware. This article proposes STATION, a gesture-based authentication system, an effective gesture-based authentication method built on top of the voice interfaces already available in these smart home devices, without adding new hardware. STATION uses a gesture processing pipeline that identifies Doppler-existing frames and detects the direction of arrival of Reflection to authenticate users in low SNR environments and at longer distances. Furthermore, regarding the nature of gesture-based authentication, this system also supports detecting user liveness, preventing replay and synthesis attacks from remote attackers. The evaluation of STATION shows high accuracy with a false acceptance rate (FAR) of 0.08% and false rejection rate (FRR) of 3.10% for users within 1.5 m of the device. 
    more » « less
  5. Pattern unlock is a popular screen unlock scheme that protects the sensitive data and information stored in mobile devices from unauthorized access. However, it is also susceptible to various attacks, including guessing attacks, shoulder surfing attacks, smudge attacks, and side-channel attacks, which can achieve a high success rate in breaking the patterns. In this paper, we propose a new two-factor screen unlock scheme that incorporates surface electromyography (sEMG)-based biometrics with patterns for user authentication. sEMG signals are unique biometric traits suitable for person identification, which can greatly improve the security of pattern unlock. During a screen unlock session, sEMG signals are recorded when the user draws the pattern on the device screen. Time-domain features extracted from the recorded sEMG signals are then used as the input of a one-class classifier to identify the user is legitimate or not. We conducted an experiment involving 10 subjects to test the effectiveness of the proposed scheme. It is shown that the adopted time-domain sEMG features and one-class classifiers achieve good authentication performance in terms of the F 1 score and Half of Total Error Rate (HTER). The results demonstrate that the proposed scheme is a promising solution to enhance the security of pattern unlock. 
    more » « less