skip to main content


Title: Collective Development of Large Scale Data Science Products via Modularized Assignments: An Experience Report
Many universities are offering data science (DS) courses to fulfill the growing demands for skilled DS practitioners. Assignments and projects are essential parts of the DS curriculum as they enable students to gain hands-on experience in real-world DS tasks. However, most current assignments and projects are lacking in at least one of two ways: 1) they do not comprehensively teach all the steps involved in the complete workflow of DS projects; 2) students work on separate problems individually or in small teams, limiting the scale and impact of their solutions. To overcome these limitations, we envision novel synergistic modular assignments where a large number of students work collectively on all the tasks required to develop a large-scale DS product. The resulting product can be continuously improved with students' contributions every semester. We report our experience with developing and deploying such an assignment in an Information Retrieval course. Through the assignment, students collectively developed a search engine for finding expert faculty specializing in a given field. This shows the utility of such assignments both for teaching useful DS skills and driving innovation and research. We share useful lessons for other instructors to adopt similar assignments for their DS courses.  more » « less
Award ID(s):
1801652
NSF-PAR ID:
10172972
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the 51st ACM Technical Symposium on Computer Science Education
Page Range / eLocation ID:
1200–1206
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The COVID-19 pandemic led to the suspension of many summer research opportunities for science, technology, engineering and mathematics students. In response, the Incorporated Research Institutions for Seismology Education and Outreach program, in collaboration with Miami University, offered a free online Seismology Skill Building Workshop to increase undergraduates’ knowledge, skills, self-efficacy, and interest in observational seismology and scientific computing. Registrations were received from 760 undergraduates representing 60 different countries. U.S. participants consisted of 59% women and 29% from populations traditionally underrepresented in the geosciences. The workshop design consisted of a tailored Linux virtual machine, regular webinars, a Slack workspace, tutorial-style active e-learning assignments, and an optional final project. Every other week for 12 weeks, a module with ∼6 assignments was released to build skills with Linux, Generic Mapping Tools, Seismic Analysis Code, webservices, seismic network processing, Python, ObsPy, and Jupyter notebooks. A final module focused on competitiveness for graduate school, summer internships, and professional jobs. Evaluation of the workshop relied on registration data, pre- and post-workshop surveys, and performance data from the learning management system. 440 participants completed at least one assignment, 224 completed at least 80% of the assignments, and 191 completed all 35 assignments, significantly higher than most comparable large-scale, open-access courses. Participants invested ∼6 hrs per week and averaged a score of 88% on assignments. We identified >60% normalized gain in scientific computing skills. There is evidence that the inclusive design of the workshop was able to attract and retain a diverse population. However, some additional investigation is needed to ensure that benefits were evenly experienced. Regardless of the degree of completion, participants perceived the workshop quite positively: on average 96% described it as high to very high quality, 83% satisfied to very satisfied with their experience, and 70% very likely to recommend to peers. We identify future directions for running a second iteration of the workshop, including strategies to continue broadening participation and improving retention. 
    more » « less
  2. This research paper introduces a unique system called ZORQ that is a combination of a game development frame- work and a gamification framework (GDGF). The ZORQ GDGF acts as a catalyst to help motivate students by increasing student engagement and success within undergraduate Computer Science (CS) education, regardless of student experience and background. The dynamic gamification elements utilized within the GDGF make it an attractive learning method for students. After col- laborative game space customization, ZORQ gameplay sees each student tasked with designing a ship movement philosophy and then implementing their own code to autonomously control the ship in an interstellar game space filled with supplies, obstacles, and enemy ships. The particulars of engagements between ships can vary greatly by semester, along with the resources/objects present in the game, depending on the collaborative customization and the independent ship strategies implemented. A preliminary Z O R Q trial was conducted over five years in an undergraduate Data Structures and Algorithms (DSA) course. The ZORQ trial is designed to fulfill the following objectives: 1) implement DSA concepts discussed within the course, 2) identify appropriate problem-solving approaches, 3) apply one or more solutions, 4) build depth with a coding language, 5) bridge the gap between limited concept assignments and large, multi-developer software systems by allowing students to build code within a larger architecture, 6) introduce students to version control, 7) illustrate the use of prior mathematics coursework in practical applications, and 8) introduce unit testing in software systems.In exit surveys, students expressed overwhelming satisfaction with this approach. More than 84% of the students surveyed found the system useful in their educational experience and saw benefit to inspecting a completed software project. 82% of the students found that Z O R Q increased software development com- prehension. 80% enjoyed using their own personal creativity in designing a ship controller, 76% found ZORQ helped them learn how to implement and use DSAs. 71% found the system engaging and found the system interaction to be clear and understandable. Observations of student performance in later courses suggest better student maturity and comprehension in preparation for proposing and implementing their own independent projects. 
    more » « less
  3. The science, technology, engineering and mathematics (STEM) workforce contributes to the U.S. economy by supporting 67% of jobs and 69% of the gross domestic product [1]. Currently, there is an increased demand for engineering and computer science (E/CS) professionals, particularly those from underrepresented (e.g., gender, racial, ethnic) and underserved (socio-economic, geographically isolated) groups who bring diversity of thought and experience to the national E/CS workforce [2]. Correspondingly, educational institutions are called upon to develop capabilities to attract, engage, and retain students from these diverse backgrounds in E/CS programs of study. To encourage and enable diverse students to opt into and persist within E/CS programs of study, there is a critical need to engage students in supportive and enriching opportunities from which to learn and grow. The importance of student engagement for promoting student growth and development has been researched to such an extent that its utility is widely agreed upon [5]. Importantly, it has been shown that both academic and extracurricular aspects of a student’s learning processes are characterized by engagement [6]. High Impact Educational Practices (HIP) provide useful opportunities for deep student engagement and, thus, positively influence student retention and persistence [4]. Kuh [3] identified eleven curricular and extracurricular HIP (i.e., collaborative assignments and projects, common intellectual experiences, eportfolios, first year seminars and experiences, global learning and study abroad, internships, learning communities, senior culminating experiences, service and community-based learning, undergraduate research, and writing intensive courses). In computer science and engineering education fields, however, the extent to which HIP affects persistence and retention has not been fully investigated. This project aims to examine E/CS undergraduate student engagement in HIP and to understand the factors that contribute to positive engagement experiences. 
    more » « less
  4. null (Ed.)
    This article details the multi-year process of adding a “design thread” to our department’s electrical and computer engineering curricula. We use the conception of a “thread” to mean a sequence of courses that extend unbroken across each year of the undergraduate curriculum. The design thread includes a project-based introduction to the discipline course in the first year, a course in the second year focusing on measurement and fabrication, a course in the third year to frame technical problems in societal challenges, and culminates with our two-semester, client-driven fourth-year capstone design sequence. The impetus to create a design thread arose from preparation for an ABET visit where we identified a need for more “systems thinking” within the curriculum, particularly system decomposition and modularity; difficulty in having students make engineering evaluations of systems based on data; and students’ difficulty transferring skills in testing, measurement, and evaluation from in-class lab scenarios to more independent work on projects. We also noted that when working in teams, students operated more collectively than collaboratively. In other words, rather than using task division and specialization to carry out larger projects, students addressed all problems collectively as a group. This paper discusses the process through which faculty developed a shared conception of design to enable coherent changes to courses in the four year sequence and the political and practical compromises needed to create the design thread. To develop a shared conception of design faculty explored several frameworks that emphasized multiple aspects of design. Course changes based on elements of these frameworks included introducing design representations such as block diagrams to promote systems thinking in the first year and consistently utilizing representations throughout the remainder of the four year sequence. Emphasizing modularity through representations also enabled introducing aspects of collaborative teamwork. While students are introduced broadly to elements of the design framework in their first year, later years emphasize particular aspects. The second year course focuses on skills in fabrication and performance measurement while the third year course emphasizes problem context and users, in an iterative design process. The client-based senior capstone experience integrates all seven aspects of our framework. On the political and organizational side implementing the design thread required major content changes in the department’s introductory course, and freeing up six credit-hour equivalents, one and a half courses, in the curriculum. The paper discusses how the ABET process enabled these discussions to occur, other curricular changes needed to enable the design thread to be implemented, and methods which enabled the two degree programs to align faculty motivation, distribute the workload, and understand the impact the curricular changes had on student learning. 
    more » « less
  5. International collaborations for community colleges are important for students who will be competing for employment yet are often overlooked due to the perception that international means expensive. The International Education Initiative (IEI) provides opportunities for international collaboration among community college faculty and students. The IEI is a multi-tiered program that allows different levels of participation and cost for faculty and students through funding from the National Science Foundation Advanced Technological Education Program and the French Embassy in the United States. While the main focus is engineering and technology courses, partners have also included business and communications classes, creating a truly interdisciplinary program. Students participating in these programs can expect to have greater cross-cultural maturity and awareness of the wider world, increased confidence in finding future success in the global workforce, and increased ability to deploy 21st Century skills such as technology and teamwork. Faculty participating in the program can expect to have increased confidence and skills in faculty to support students in achieving 21st century skills; increased ability to co-teach and work effectively with and overseas partner, and more motivation and readiness to sustain overseas partnerships and help grow the international program. The Connecticut Collaborative Learning for International Capabilities and Knowledge (CT CLICKs) provides the opportunity for students to receive a global experience as part of a course they are already taking. During the first year of the program, Faculty from Connecticut community colleges partnered with faculty from French Insitituts universitaires de technologie (IUTs), French equivalent of community colleges, to co-teach curriculum modules to their participating classes. The second year added the option of co-facilitating a project between the two classes. All teaching, assignments, and projects were completed through virtual platforms. Several travel opportunities have been provided for student and faculty participants. These have either been through the attendance of international technology bootcamps that were organized by the French Embassy or a partner IUT or through a travel program organized by the IEI. Both travel options include experiences that provide an overview of French engineering and technology education, industry, history, and culture. A faculty recruitment and preparation model has been created to continuously onboard new faculty for the IEI program. The model includes a program overview workshop, partner matching, and curriculum design workshop that all take place virtually. The CT CLICKs program has built steadily and quickly. The number of teachers participating grew from 6 to 29 in the first three years with more than 6 teachers repeating or developing new modules. A total of 334 students have participated in the CT CLICKs program since fall 2017. The number of Connecticut campuses grew from 1 to 8 and overseas partner campuses grew from 2 to 5. Participant survey data shows that the program is continuously improving in helping students gain a better worldview and how to collaborate cross-culturally and helping faculty incorporate international collaboration into their courses. 
    more » « less