skip to main content

Title: Using Wikipedia Assignments to Teach Critical Thinking and Scientific Writing in STEM Courses
While many instructors have reservations against Wikipedia use in academic settings, editing Wikipedia teaches students valuable writing, editing, and critical thinking skills. Wikipedia assignments align with the community of inquiry framework, which focuses on the elements needed for a successful online learning experience. We report on a faculty mentoring network, created by WikiProject Limnology and Oceanography, which helped 14 instructors with little to no prior experience implement a Wikipedia assignment in their classes. We found that Wikipedia assignments increase students’ motivation to produce high quality work and enhance their awareness of reliable scientific sources. Wikipedia assignments can be comparable to other writing assignments in length and complexity, but have a far wider audience than a traditional research paper. Participants in our mentoring network reported challenges with implementing this new type of assignment, and here, we share resources and solutions to those reported barriers.  more » « less
Award ID(s):
1724433 1930655
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Education
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. “An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions” is a fundamental outcome of all engineering programs. Students conduct laboratory experiments in all areas of engineering and report on their findings. New faculty, however, have little experience or training in how to develop effective lab report assignments and instruct students on how to write laboratory reports. In an effort to improve both the teaching and learning of laboratory report writing, engineering educators from three distinct universities (one large public research university, one small public polytechnic university, and one private undergraduate university) developed a series of online laboratory report writing instructional modules. These modules were presented to laboratory instructors, half with less than four years of teaching experience—at a Community of Practice (CoP) retreat in the spring of 2022. Focus groups were conducted with the instructors to determine the potential benefits and shortcomings of the modules, after which the modules underwent significant revisions. Near the conclusion of the CoP retreat, participants reported feeling motivated to implement the newly revised modules to improve their laboratory report writing instruction. Follow-up focus groups were conducted in the following winter to determine if this motivation remained high throughout the summer and resulted in the development of new and improved laboratory assignments in the new academic year. The paper will briefly introduce the modules and present the results of these focus group meetings. 
    more » « less
  2. Abstract

    The COVID‐19 pandemic has created new challenges for instructors who seek high‐impact educational practices that can be facilitated online without creating excessive burdens with technology, grading, or enforcement of honor codes. These practices must also account for the possibility that some students may need to join courses asynchronously and have limited or unreliable connectivity. Of the American Association of Colleges and University's list of 11 high‐impact educational practices, writing‐intensive courses may be the easiest for science faculty to adopt during these difficult times. Not only can writing assignments promote conceptual learning, they can also deepen student engagement with the subject matter and with each other. Furthermore, writing assignments can be incredibly flexible in terms of how they are implemented online and can be designed to reduce the possibility of cheating and plagiarism. To accelerate the adoption of writing pedagogies, we summarize evidence‐based characteristics of effective writing assignments and offer a sample writing assignment from an introductory ecology course. We then suggest five strategies to help instructors manage their workload. Although the details of the sample assignment may be particular to our course, this framework is general enough to be adapted to most science courses, including those taught in‐person, those taught online, and those that must be able to switch quickly between the two.

    more » « less
  3. null (Ed.)
    Purpose: We gathered examples from our extended collaboration to move educators move online while avoiding synchronous meetings. “gPortfolios” are public (to the class) pages where students write responses to carefully constructed engagement routines. Students then discuss their work with instructors and peers in threaded comments. gPortfolios usually include engagement reflections, formative self-assessments, and automated quizzes. These assessments support and document learning while avoiding instructor “burnout” from grading. gPortfolios can be implemented using Google Docs and Forms or any learning management system. Methodology. We report practical insights gained from design-based implementation research. This research explored the late Randi Engle’s principles for productive disciplinary engagement and expansive framing. Engle used current theories of learning to foster student discussions that were both authentic to the academic discipline at hand and productive for learning. This research also used new approaches to assessment to support Engle’s principles. This resulted in a comprehensive approach to online instruction and assessment that is effective and efficient for both students and teachers. Findings. Our approach “frames” (i.e., contextualizes) online engagement using each learners’ own experiences, perspectives, and goals. Writing this revealed how this was different in different courses. Secondary biology students framed each assignment independently. Secondary English and history students framed assignments as elements of a personalized capstone presentation; the history students further used a self-selected “historical theme.” Graduate students framed each assignment in an educational assessment course using a real or imagined curricular aim and context. Originality. Engle’s ideas have yet to be widely taken up in online education. 
    more » « less
  4. Many universities are offering data science (DS) courses to fulfill the growing demands for skilled DS practitioners. Assignments and projects are essential parts of the DS curriculum as they enable students to gain hands-on experience in real-world DS tasks. However, most current assignments and projects are lacking in at least one of two ways: 1) they do not comprehensively teach all the steps involved in the complete workflow of DS projects; 2) students work on separate problems individually or in small teams, limiting the scale and impact of their solutions. To overcome these limitations, we envision novel synergistic modular assignments where a large number of students work collectively on all the tasks required to develop a large-scale DS product. The resulting product can be continuously improved with students' contributions every semester. We report our experience with developing and deploying such an assignment in an Information Retrieval course. Through the assignment, students collectively developed a search engine for finding expert faculty specializing in a given field. This shows the utility of such assignments both for teaching useful DS skills and driving innovation and research. We share useful lessons for other instructors to adopt similar assignments for their DS courses. 
    more » « less
  5. Evidence has shown that facilitating student-centered learning (SCL) in STEM classrooms enhances student learning and satisfaction [1]–[3]. However, despite increased support from educational and government bodies to incorporate SCL practices [1], minimal changes have been made in undergraduate STEM curriculum [4]. Faculty often teach as they were taught, relying heavily on traditional lecture-based teaching to disseminate knowledge [4]. Though some faculty express the desire to improve their teaching strategies, they feel limited by a lack of time, training, and incentives [4], [5]. To maximize student learning while minimizing instructor effort to change content, courses can be designed to incorporate simpler, less time-consuming SCL strategies that still have a positive impact on student experience. In this paper, we present one example of utilizing a variety of simple SCL strategies throughout the design and implementation of a 4-week long module. This module focused on introductory tissue engineering concepts and was designed to help students learn foundational knowledge within the field as well as develop critical technical skills. Further, the module sought to develop important professional skills such as problem-solving, teamwork, and communication. During module design and implementation, evidence-based SCL teaching strategies were applied to ensure students developed important knowledge and skills within the short timeframe. Lectures featured discussion-based active learning exercises to encourage student engagement and peer collaboration [6]–[8]. The module was designed using a situated perspective, acknowledging that knowing is inseparable from doing [9], and therefore each week, the material taught in the two lecture sessions was directly applied to that week’s lab to reinforce students’ conceptual knowledge through hands-on activities and experimental outcomes. Additionally, the majority of assignments served as formative assessments to motivate student performance while providing instructors with feedback to identify misconceptions and make real-time module improvements [10]–[12]. Students anonymously responded to pre- and post-module surveys, which focused on topics such as student motivation for enrolling in the module, module expectations, and prior experience. Students were also surveyed for student satisfaction, learning gains, and graduate student teaching team (GSTT) performance. Data suggests a high level of student satisfaction, as most students’ expectations were met, and often exceeded. Students reported developing a deeper understanding of the field of tissue engineering and learning many of the targeted basic lab skills. In addition to hands-on skills, students gained confidence to participate in research and an appreciation for interacting with and learning from peers. Finally, responses with respect to GSTT performance indicated a perceived emphasis on a learner-centered and knowledge/community-centered approaches over assessment-centeredness [13]. Overall, student feedback indicated that SCL teaching strategies can enhance student learning outcomes and experience, even over the short timeframe of this module. Student recommendations for module improvement focused primarily on modifying the lecture content and laboratory component of the module, and not on changing the teaching strategies employed. The success of this module exemplifies how instructors can implement similar strategies to increase student engagement and encourage in-depth discussions without drastically increasing instructor effort to re-format course content. Introduction. 
    more » « less