skip to main content


Title: Stein Variational Inference for Discrete Distributions
Gradient-based approximate inference methods, such as Stein variational gradient descent (SVGD), provide simple and general-purpose inference engines for differentiable continuous distributions. However, existing forms of SVGD cannot be directly applied to discrete distributions. In this work, we fill this gap by proposing a simple yet general framework that transforms discrete distributions to equivalent piecewise continuous distributions, on which the gradient-free SVGD is applied to perform efficient approximate inference. The empirical results show that our method outperforms traditional algorithms such as Gibbs sampling and discontinuous Hamiltonian Monte Carlo on various challenging benchmarks of discrete graphical models. We demonstrate that our method provides a promising tool for learning ensembles of binarized neural network (BNN), outperforming other widely used ensemble methods on learning binarized AlexNet on CIFAR-10 dataset. In addition, such transform can be straightforwardly employed in gradient-free kernelized Stein discrepancy to perform goodness-of-fit (GOF) test on discrete distributions. Our proposed method outperforms existing GOF test methods for intractable discrete distributions.  more » « less
Award ID(s):
1846421
NSF-PAR ID:
10172993
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
International Conference on Artificial Intelligence and Statistics
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Stein variational gradient descent (SVGD) is a particle-based inference algorithm that leverages gradient information for efficient approximate inference. In this work, we enhance SVGD by leveraging preconditioning matrices, such as the Hessian and Fisher information matrix, to incorporate geometric information into SVGD updates. We achieve this by presenting a generalization of SVGD that replaces the scalar-valued kernels in vanilla SVGD with more general matrix-valued kernels. This yields a significant extension of SVGD, and more importantly, allows us to flexibly incorporate various preconditioning matrices to accelerate the exploration in the probability landscape. Empirical results show that our method outperforms vanilla SVGD and a variety of baseline approaches over a range of real-world Bayesian inference tasks. 
    more » « less
  2. Sampling-based inference and learning techniques, especially Bayesian inference, provide an essential approach to handling uncertainty in machine learning (ML). As these techniques are increasingly used in daily life, it becomes essential to safeguard the ML systems with various trustworthy-related constraints, such as fairness, safety, interpretability. Mathematically, enforcing these constraints in probabilistic inference can be cast into sampling from intractable distributions subject to general nonlinear constraints, for which practical efficient algorithms are still largely missing. In this work, we propose a family of constrained sampling algorithms which generalize Langevin Dynamics (LD) and Stein Variational Gradient Descent (SVGD) to incorporate a moment constraint specified by a general nonlinear function. By exploiting the gradient flow structure of LD and SVGD, we derive two types of algorithms for handling constraints, including a primal-dual gradient approach and the constraint controlled gradient descent approach. We investigate the continuous-time mean-field limit of these algorithms and show that they have O(1/t) convergence under mild conditions. Moreover, the LD variant converges linearly assuming that a log Sobolev like inequality holds. Various numerical experiments are conducted to demonstrate the efficiency of our algorithms in trustworthy settings. 
    more » « less
  3. Diversification has been shown to be a powerful mechanism for learning robust models in non- convex settings. A notable example is learning mixture models, in which enforcing diversity between the different mixture components allows us to prevent the model collapsing phenomenon and capture more patterns from the observed data. In this work, we present a variational approach for diversity-promoting learning, which leverages the entropy functional as a natural mechanism for enforcing diversity. We develop a simple and efficient functional gradient-based algorithm for optimizing the variational objective function, which provides a significant generalization of Stein variational gradient descent (SVGD). We test our method on various challenging real world problems, including deep embedded clustering and deep anomaly detection. Empirical results show that our method provides an effective mechanism for diversity-promoting learning, achieving substantial improvement over existing methods. 
    more » « less
  4. Abstract

    Probabilistic graphical models provide a powerful tool to describe complex statistical structure, with many real-world applications in science and engineering from controlling robotic arms to understanding neuronal computations. A major challenge for these graphical models is that inferences such as marginalization are intractable for general graphs. These inferences are often approximated by a distributed message-passing algorithm such as Belief Propagation, which does not always perform well on graphs with cycles, nor can it always be easily specified for complex continuous probability distributions. Such difficulties arise frequently in expressive graphical models that include intractable higher-order interactions. In this paper we define the Recurrent Factor Graph Neural Network (RF-GNN) to achieve fast approximate inference on graphical models that involve many-variable interactions. Experimental results on several families of graphical models demonstrate the out-of-distribution generalization capability of our method to different sized graphs, and indicate the domain in which our method outperforms Belief Propagation (BP). Moreover, we test the RF-GNN on a real-world Low-Density Parity-Check dataset as a benchmark along with other baseline models including BP variants and other GNN methods. Overall we find that RF-GNNs outperform other methods under high noise levels.

     
    more » « less
  5. Batch Bayesian optimization has been shown to be an efficient and successful approach for black-box function optimization, especially when the evaluation of cost function is highly expensive but can be efficiently parallelized. In this paper, we introduce a novel variational framework for batch query optimization, based on the argument that the query batch should be selected to have both high diversity and good worst case performance. This motivates us to introduce a variational objective that combines a quantile-based risk measure (for worst case performance) and entropy regularization (for enforcing diversity). We derive a gradient-based particle-based algorithm for solving our quantile-based variational objective, which generalizes Stein variational gradient descent (SVGD). We evaluate our method on a number of real-world applications and show that it consistently outperforms other recent state-of-the-art batch Bayesian optimization methods. Extensive experimental results indicate that our method achieves better or comparable performance, compared to the existing methods. 
    more » « less