skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Template-Free Synthesis of a Macrocyclic Bis(pyridine-dienamine) Proligand and Metal Complexes of Its Bis(pyridine-diimine) and Bis(pyridine-dienamido) Forms
Award ID(s):
1709159
PAR ID:
10173163
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Inorganic Chemistry
Volume:
58
Issue:
22
ISSN:
0020-1669
Page Range / eLocation ID:
15466 to 15478
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. Abstract 2,6‐Bis(pyrrol‐2‐yl)pyridines are important building blocks for supramolecular assemblies and photoluminescent main group and transition metal compounds. Sterically encumbered 2,6‐bis(5‐(2,4,6‐trimethylphenyl)‐3‐phenyl‐1H‐pyrrol‐2‐yl)pyridine, H2MesPDPPh, can adopt monomeric and dimeric structures in the solid state and in solution, controlled by competing inter‐ and intramolecular hydrogen bonds. Deprotonation in the presence of lithium cations provides Li2MesPDPPh, which can be isolated in monomeric and dimeric forms depending on solvent polarity. Protonation of H2MesPDPPhdisrupts intramolecular hydrogen bonding and provides the monomeric pyridinium salt [H3MesPDPPh]Cl. Independent of solvent polarity, all three derivatives exhibit intense fluorescence in solution. The absorption and emission spectra are highly sensitive to the level of protonation, which can be rationalized by the effects of (de)protonation on the HOMO and LUMO of the tricyclic π‐system. 
    more » « less